Base Stepper
exponax.BaseStepper
¤
Bases: Module
, ABC
Source code in exponax/_base_stepper.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
num_channels: int,
order: int,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Baseclass for timesteppers based on Fourier pseudo-spectral Exponential Time Differencing Runge Kutta methods (ETDRK); efficiently solving semi-linear PDEs of the form
uₜ = ℒu + 𝒩(u)
with a linear differential operator ℒ and a nonlinear differential operator 𝒩(...).
A subclass must implement the methods _build_linear_operator
and
_build_nonlinear_fun
. The former returns the diagonal linear operator
in Fourier space. The latter returns a subclass of BaseNonlinearFun
.
See the exponax.ic
submodule for pre-defined nonlinear operators and
how to subclass your own.
Save attributes specific to the concrete PDE before calling the parent constructor because it will call the abstract methods.
Arguments:
num_spatial_dims
: The number of spatial dimensions.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.num_channels
: The number of channelsC
in the state vector/tensor. For most problem, like simple linear PDEs this will be one (because the temperature field in a heat/diffusion PDE is a scalar field). Some other problems like Burgers equation in higher dimensions or reaction-diffusion equations with multiple species will have more than one channel. This information is only used to check the shape of the input state vector in the__call__
method. (keyword-only)order
: The order of the ETDRK method to use. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Hence, only use this for linear PDEs. For nonlinear PDEs, a higher order method tends to be more stable and accurate.2
is often a good compromis in single-precision. Use4
together with double precision (jax.config.update("jax_enable_x64", True)
) for highest accuracy. (keyword-only)num_circle_points
: The number of points to use on the unit circlenum_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Source code in exponax/_base_stepper.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|