Nonlinear¤
exponax.stepper.generic.DifficultyNonlinearStepper
¤
Bases: NormalizedNonlinearStepper
Source code in exponax/stepper/generic/_nonlinear.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
__init__
¤
__init__(
num_spatial_dims: int = 1,
num_points: int = 48,
*,
linear_difficulties: tuple[float, ...] = (
0.0,
0.0,
0.1 * 0.1 / 1.0 * 48**2 * 2,
),
nonlinear_difficulties: tuple[float, float, float] = (
0.0,
-1.0 * 0.1 / 1.0 * 48,
0.0,
),
maximum_absolute: float = 1.0,
order: int = 2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for difficulty-based d-dimensional (d ∈ {1, 2, 3}
)
semi-linear PDEs consisting of a quadratic, a single-channel convection,
and a gradient norm nonlinearity together with an arbitrary combination
of (isotropic) linear derivatives. Uses a difficulty-based interface
where the "intensity" of the dynamics reduces with increasing
resolution. This is intended such that emulator learning problems on two
resolutions are comparibly difficult.
Different to exponax.stepper.generic.NormalizedNonlinearStepper
, the
dynamics are defined by difficulties. The difficulties are a different
combination of normalized dynamics, num_spatial_dims
, and
num_points
.
γᵢ = αᵢ Nⁱ 2ⁱ⁻¹ d
with d
the number of spatial dimensions, N
the number of points, and
αᵢ
the normalized coefficient.
The difficulties of the nonlinear terms are
δ₀ = β₀
δ₁ = β₁ * M * N * D
δ₂ = β₂ * M * N² * D
with βᵢ
the normalized coefficient and M
the maximum absolute value
of the input state (typically 1.0
if one uses the exponax.ic
random
generators with the max_one=True
argument).
This interface is more natural than the normalized interface because the
difficulties for all orders (given by i
) are around 1.0. Additionally,
they relate to stability condition of explicit Finite Difference schemes
for the particular equations. For example, for advection (i=1
), the
absolute of the difficulty is the Courant-Friedrichs-Lewy (CFL) number.
Under the default settings, this timestep corresponds to a Burgers equation in single-channel mode.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.linear_difficulties
: The list of difficultiesγᵢ
corresponding to the linear derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, 0.1 * 0.1 / 1.0 * 48**2 * 2)
together with the defaultnonlinear_difficulties
corresponds to the Burgers equation.nonlinear_difficulties
: The list of difficultiesδ₀
,δ₁
, andδ₂
(in this order) corresponding to the quadratic, (single-channel) convection, and gradient norm nonlinearity, respectively. The default value(0.0, -1.0 * 0.1 / 1.0 * 48, 0.0)
corresponds to a (single-channel) convection nonlinearity. Note that all nonlinear contributions are considered to be on the right-hand side of the PDE.maximum_absolute
: The maximum absolute value of the input state. This is used to scale the nonlinear difficulties.order
: The order of the ETDRK method to use. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default value2/3
corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method.
Source code in exponax/stepper/generic/_nonlinear.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|