Gradient NormA¤
exponax.stepper.generic.NormalizedGradientNormStepper
¤
Bases: GeneralGradientNormStepper
Source code in exponax/stepper/generic/_gradient_norm.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
__init__
¤
__init__(
num_spatial_dims: int,
num_points: int,
*,
normalized_linear_coefficients: tuple[float, ...] = (
0.0,
0.0,
-1.0 * 0.1 / 60.0**2,
0.0,
-1.0 * 0.1 / 60.0**4,
),
normalized_gradient_norm_scale: float = 1.0
* 0.1
/ 60.0**2,
order: int = 2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the normalized d-dimensional (d ∈ {1, 2, 3}
)
semi-linear PDEs consisting of a gradient norm nonlinearity and an
arbitrary combination of (isotropic) linear operators. Uses a normalized
interface, i.e., the domain is scaled to Ω = (0, 1)ᵈ
and time step
size is Δt = 1.0
.
See exponax.stepper.generic.GeneralGradientNormStepper
for more
details on the functional form of the PDE.
The number of channels do not grow with the number of spatial dimensions. They are always one.
Under the default settings, it behaves like the Kuramoto-Sivashinsky equation in combustion format under the following settings.
By default: the KS equation on L=60.0
exponax.stepper.KuramotoSivashinsky(
num_spatial_dims=D, domain_extent=60.0, num_points=N, dt=0.1,
gradient_norm_scale=1.0, second_order_diffusivity=1.0,
fourth_order_diffusivity=1.0,
)
Note that the coefficient list requires a negative sign because the linear derivatives are moved to the right-hand side in this generic interface.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.normalized_coefficients
: The list of coefficientsa_j
corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, -1.0 * 0.1 / (60.0**2), 0.0, -1.0 * 0.1 / (60.0**4))
corresponds to the Kuramoto-Sivashinsky equation in combustion format on a domain of sizeL=60.0
with a time step size ofΔt=0.1
.normalized_gradient_norm_scale
: The scale of the gradient norm termb₂
. Default:1.0 * 0.1 / (60.0**2)
.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2. Default: 2/3.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Source code in exponax/stepper/generic/_gradient_norm.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|