Nonlinear¤
exponax.stepper.generic.NormalizedNonlinearStepper
¤
Bases: GeneralNonlinearStepper
Source code in exponax/stepper/generic/_nonlinear.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__init__
¤
__init__(
num_spatial_dims: int,
num_points: int,
*,
normalized_linear_coefficients: tuple[float, ...] = (
0.0,
0.0,
0.1 * 0.1,
),
normalized_nonlinear_coefficients: tuple[
float, float, float
] = (0.0, -1.0 * 0.1, 0.0),
order=2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
By default Burgers.
Timesteppr for normalized d-dimensional (d ∈ {1, 2, 3}
)
semi-linear PDEs consisting of a quadratic, a single-channel convection,
and a gradient norm nonlinearity together with an arbitrary combination
of (isotropic) linear derivatives. Uses a normalized interface, i.e.,
the domain is scaled to Ω = (0, 1)ᵈ
and time step size is Δt = 1.0
.
See exponax.stepper.generic.GeneralNonlinearStepper
for more details
on the functional form of the PDE.
Behaves like a single-channel Burgers equation by default under the following settings
exponax.stepper.Burgers(
num_spatial_dims=num_spatial_dims, domain_extent=1.0,
num_points=num_points, dt=1.0, convection_scale=1.0,
diffusivity=0.1, single_channel=True,
)
Effectively, this timestepper is a combination of the
exponax.stepper.generic.NormalizedPolynomialStepper
(with only the
coefficient to the quadratic polynomial being set with b₀
), the
exponax.stepper.generic.NormalizedConvectionStepper
(with the
single-channel hack activated via single_channel=True
and the
convection scale set with - b₁
), and the
exponax.stepper.generic.NormalizedGradientNormStepper
(with the
gradient norm scale set with - b₂
).
Warning
In contrast to the
exponax.stepper.generic.NormalizedConvectionStepper
and the
exponax.stepper.generic.NormalizedGradientNormStepper
, the
nonlinear terms are no considered to be on right-hand side of the
PDE. Hence, in order to get the same dynamics as in the other
steppers, the coefficients must be negated. (This is not relevant
for the coefficient of the quadratic polynomial because in the
exponax.stepper.generic.NormalizedPolynomialStepper
the polynomial
nonlinearity is already on the right-hand side.)
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.normalized_linear_coefficients
: The list of coefficientsαⱼ
corresponding to the linear derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, 0.1 * 0.1)
together with the defaultnormalized_nonlinear_coefficients
corresponds to the Burgers equation (in single-channel mode).normalized_nonlinear_coefficients
: The list of coefficientsβ₀
,β₁
, andβ₂
(in this order) corresponding to the quadratic, (single-channel) convection, and gradient norm nonlinearity, respectively. The default value(0.0, -1.0 * 0.1, 0.0)
corresponds to a (single-channel) convection nonlinearity scaled with0.1
. Note that all nonlinear contributions are considered to be on the right-hand side of the PDE. Hence, in order to get the "correct convection" dynamics, the coefficients must be negated. (Also relevant for the gradient norm nonlinearity)order
: The order of the ETDRK method to use. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default value2/3
corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method.
Source code in exponax/stepper/generic/_nonlinear.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|