General Convection Stepper¤
exponax.stepper.generic.GeneralConvectionStepper
¤
Bases: BaseStepper
Source code in exponax/stepper/generic/_convection.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
linear_coefficients: tuple[float, ...] = (
0.0,
0.0,
0.01,
),
convection_scale: float = 1.0,
single_channel: bool = False,
conservative: bool = False,
order=2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the d-dimensional (d ∈ {1, 2, 3}
) semi-linear PDEs
consisting of a convection nonlinearity and an arbitrary combination of
(isotropic) linear derivatives.
In 1d, the equation is given by
uₜ + b₁ 1/2 (u²)ₓ = sum_j a_j uₓˢ
with b₁
the convection coefficient and a_j
the coefficients of the
linear operators. uₓˢ
denotes the s-th derivative of u
with respect
to x
. Oftentimes b₁ = 1
.
In the default configuration, the number of channel grows with the number of spatial dimensions. The higher dimensional equation reads
uₜ + b₁ 1/2 ∇ ⋅ (u ⊗ u) = sum_j a_j (1⋅∇ʲ)u
Alternatively, with single_channel=True
, the number of channels can be
kept to constant 1 no matter the number of spatial dimensions.
Depending on the collection of linear coefficients a range of dynamics
can be represented, for example:
- Burgers equation with a = (0, 0, 0.01)
with len(a) = 3
- KdV equation with a = (0, 0, 0, 0.01)
with len(a) = 4
Arguments:
num_spatial_dims
: The number of spatial dimensionsD
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.linear_coefficients
(keyword-only): The list of coefficientsa_j
corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, 0.01)
corresponds to the Burgers equation (because of the diffusion)convection_scale
(keyword-only): The scaleb₁
of the convection term. Default is1.0
.single_channel
: Whether to use the single channel mode in higher dimensions. In this case the the convection isb₁ (∇ ⋅ 1)(u²)
. In this case, the state always has a single channel, no matter the spatial dimension. Default: False.conservative
: Whether to use the conservative form of the convection term. Default: False.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2. Default: 2/3.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Source code in exponax/stepper/generic/_convection.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|