General Gradient Norm Stepper¤
exponax.stepper.generic.GeneralGradientNormStepper
¤
Bases: BaseStepper
Source code in exponax/stepper/generic/_gradient_norm.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
linear_coefficients: tuple[float, ...] = (
0.0,
0.0,
-1.0,
0.0,
-1.0,
),
gradient_norm_scale: float = 1.0,
order=2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for d-dimensional (d ∈ {1, 2, 3}
) semi-linear PDEs
consisting of a gradient norm nonlinearity and an arbitrary combination
of (isotropic) linear operators.
In 1d, the equation is given by
uₜ + b₂ 1/2 (uₓ)² = sum_j a_j uₓˢ
with b₂
the gradient norm coefficient and a_j
the coefficients of
the linear operators. uₓˢ
denotes the s-th derivative of u
with
respect to x
. Oftentimes b₂ = 1
.
The number of channels is always one, no matter the number of spatial dimensions. The higher dimensional equation reads
uₜ + b₂ 1/2 ‖ ∇u ‖₂² = sum_j a_j (1⋅∇ʲ)u
The default configuration coincides with a Kuramoto-Sivashinsky equation
in combustion format (see exponax.stepper.KuramotoSivashinsky
). Note
that this requires negative values (because the KS usually defines their
linear operators on the left hand side of the equation)
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.linear_coefficients
(keyword-only): The list of coefficientsa_j
corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, -1.0, 0.0, -1.0)
corresponds to the Kuramoto- Sivashinsky equation in combustion format.gradient_norm_scale
(keyword-only): The scale of the gradient norm termb₂
. Default: 1.0.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2. Default: 2/3.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Source code in exponax/stepper/generic/_gradient_norm.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|