General Polynomial Stepper¤
exponax.stepper.generic.GeneralPolynomialStepper
¤
Bases: BaseStepper
Source code in exponax/stepper/generic/_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
linear_coefficients: tuple[float, ...] = (
10.0,
0.0,
1.0,
),
polynomial_coefficients: tuple[float, ...] = (
0.0,
0.0,
-10.0,
),
order=2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the d-dimensional (d ∈ {1, 2, 3}
) semi-linear PDEs
consisting of an arbitrary combination of polynomial nonlinearities and
(isotropic) linear derivatives. This can be used to represent a wide
array of reaction-diffusion equations.
In 1d, the PDE is of the form
uₜ = ∑ₖ pₖ uᵏ + ∑ⱼ aⱼ uₓʲ
where pₖ
are the polynomial coefficients and aⱼ
are the linear
coefficients. uᵏ
denotes u
pointwise raised to the power of k
(hence the polynomial contribution) and uₓʲ
denotes the j
-th
derivative of u
.
The higher-dimensional generalization reads
uₜ = ∑ₖ pₖ uᵏ + ∑ⱼ a_j (1⋅∇ʲ)u
where ∇ʲ
is the j
-th derivative operator.
The default configuration corresponds to the Fisher-KPP equation with the following settings
exponax.stepper.reaction.FisherKPP(
num_spatial_dims=num_spatial_dims, domain_extent=domain_extent,
num_points=num_points, dt=dt, diffusivity=0.01, reactivity=-10.0,
#TODO: Check this
)
Note that the effect of polynomial_scale[1] is similar to the effect of coefficients[0] with the difference that in ETDRK integration the latter is treated anlytically and should be preferred.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.linear_coefficients
: The list of coefficientsa_j
corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value(10.0, 0.0, 0.01)
in combination with the defaultpolynomial_coefficients
corresponds to the Fisher-KPP equation.polynomial_coefficients
: The list of scalespₖ
corresponding to the polynomial contributions. The length of this tuple represents the highest occuring polynomial. The default value(0.0, 0.0, 10.0)
in combination with the defaultlinear_coefficients
corresponds to the Fisher-KPP equation.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule which is sufficient if the highest occuring polynomial is quadratic (i.e., there are at maximum three entries in thepolynomial_scales
tuple).num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method.
Source code in exponax/stepper/generic/_polynomial.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|