General Vorticity Convection Stepper¤
exponax.stepper.generic.GeneralVorticityConvectionStepper
¤
Bases: BaseStepper
Source code in exponax/stepper/generic/_vorticity_convection.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
vorticity_convection_scale: float = 1.0,
linear_coefficients: tuple[float, ...] = (
0.0,
0.0,
0.001,
),
injection_mode: int = 4,
injection_scale: float = 0.0,
order: int = 2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for 2D PDEs consisting of vorticity convection term and an arbitrary combination of (isotropic) linear derivatives.
uₜ + b ([1, -1]ᵀ ⊙ ∇(Δ⁻¹u)) ⋅ ∇u = sum_j a_j (1⋅∇ʲ)u
where b
is the vorticity convection scale, a_j
are the coefficients
of the linear derivatives, and ∇ʲ
is the j
-th derivative operator.
In the default configuration, this corresponds to the 2D Navier-Stokes
simulation with a viscosity of ν = 0.001
(the resulting Reynols number
depends on the domain_extent
. In the case of a unit square domain,
i.e., domain_extent = 1
, the Reynols number is Re = 1/ν = 1000
).
Depending on the initial state, this corresponds to a decaying 2D
turbulence.
Additionally, one can set an injection_mode
and injection_scale
to
inject energy into the system. For example, this allows for the
simulation of forced turbulence (=Kolmogorov flow).
Arguments:
num_spatial_dims
: number of spatial dimensionsD
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.linear_coefficients
: The list of coefficientsa_j
corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value(0.0, 0.0, 0.001)
corresponds to pure regular diffusion.vorticity_convection_scale
: The scaleb
of the vorticity convection term.injection_mode
: The mode of the injection.injection_scale
: The scale of the injection. Defaults to0.0
which means no injection. Hence, the flow will decay over time.dealiasing_fraction
: The fraction of the modes that are kept after dealiasing. The default value2/3
corresponds to the 2/3 rule.order
: The order of the ETDRK method to use. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Hence, only use this for linear PDEs. For nonlinear PDEs, a higher order method tends to be more stable and accurate.2
is often a good compromis in single-precision. Use4
together with double precision (jax.config.update("jax_enable_x64", True)
) for highest accuracy.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method.
Source code in exponax/stepper/generic/_vorticity_convection.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|