Korteweg-de Vries¤
exponax.stepper.KortewegDeVries
¤
Bases: BaseStepper
Source code in exponax/stepper/_korteweg_de_vries.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
convection_scale: float = -6.0,
diffusivity: float = 0.0,
dispersivity: float = 1.0,
hyper_diffusivity: float = 0.01,
advect_over_diffuse: bool = False,
diffuse_over_diffuse: bool = False,
single_channel: bool = False,
conservative: bool = False,
order: int = 2,
dealiasing_fraction: float = 2 / 3,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the d-dimensional (d ∈ {1, 2, 3}
) (hyper-viscous)
Korteweg-de Vries equation on periodic boundary conditions.
In 1d, the Korteweg-de Vries equation is given by
uₜ + b₁ 1/2 (u²)ₓ + a₃ uₓₓₓ = ν uₓₓ - μ uₓₓₓₓ
with b₁
the convection coefficient, a₃
the dispersion coefficient
and ν
the diffusivity. Oftentimes b₁ = -6
and ν = 0
. The
nonlinearity is similar to the Burgers equation and the number of
channels grow with the number of spatial dimensions. In higher
dimensions, the equation reads (using vector format for the channels)
uₜ + b₁ 1/2 ∇ ⋅ (u ⊗ u) + a₃ 1 ⋅ (∇⊙∇⊙(∇u)) = ν Δu - μ ((∇⊙∇) ⋅ (∇⊙∇)) u
or
uₜ + b₁ 1/2 ∇ ⋅ (u ⊗ u) + a₃ ∇ ⋅ ∇(Δu) = ν Δu - μ Δ(Δu)
if advect_over_diffuse
is True
and diffuse_on_diffuse
is True
,
In 1d, the expected temporal behavior is that the initial condition
breaks into soliton waves that propagate at a speed depending on their
height. They interact with other soliton waves by being spatially
displaced but having an unchanged shape and propagation speed. If either
the diffusivity
or the hyper_diffusivity
is non-zero (by default,
the latter is active), the solution will decay over time with the
produced small-scall features decaying the fastest.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.convection_scale
: The convection coefficientb₁
. Note that the convection is already scaled by 1/2 to account for the conservative evaluation. The value ofb₁
scales it further. Oftentimesb₁ = -6
to match the analytical soliton solutions. See also https://en.wikipedia.org/wiki/Korteweg%E2%80%93De_Vries_equation#One-soliton_solutiondiffusivity
: The rate at which the solution decays.dispersivity
: The dispersion coefficienta₃
. Dispersion refers to wavenumber-dependent advection, i.e., higher wavenumbers are advected faster. Default1.0
,hyper_diffusivity
: The hyper-diffusivity (associated with a fourth-order term). This stepper only supports scalar (=isotropic) hyper-diffusivity. Default: 0.01.advect_over_diffuse
: IfTrue
, the dispersion is computed as advection over diffusion. This adds spatial mixing. Default isFalse
.diffuse_on_diffuse
: IfTrue
, the hyper-diffusion is computed as the diffusion of the diffusion. This adds spatial mixing. Default isFalse
.single_channel
: Whether to use the single channel mode in higher dimensions. In this case the the convection isb₁ (∇ ⋅ 1)(u²)
. In this case, the state always has a single channel, no matter the spatial dimension. Default: False.conservative
: Whether to use the conservative form of the convection term. Default: False.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.dealiasing_fraction
: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule. To fully eliminate aliasing, use 1/2. Default: 2/3.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Notes:
-
Good Values:
- There is an anlytical solution to the (inviscid,
ν = 0
) KdV ofu(t, x) = - 1/2 c^2 sech^2(c/2 (x - ct - a))
with the hyperbolic secantsech
and arbitrarily selected speedc
and shifta
. - For a nice simulation with an initial condition that breaks into
solitons choose
domain_extent=20.0
and an initial condition with the first 5-10 modes. Set dt=0.01, num points in the range of 50-200 are sufficient.
Source code in exponax/stepper/_korteweg_de_vries.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|