Allen-Cahn¤
exponax.stepper.reaction.AllenCahn
¤
Bases: BaseStepper
Source code in exponax/stepper/reaction/_allen_cahn.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | |
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
diffusivity: float = 0.005,
first_order_coefficient: float = 1.0,
third_order_coefficient: float = -1.0,
order: int = 2,
dealiasing_fraction: float = 1 / 2,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the d-dimensional (d ∈ {1, 2, 3}) Allen-Cahn
reaction-diffusion equation on periodic boundary conditions. This
reaction-diffusion equation is a model for phase separation, for example
the separation of oil and water.
In 1d, the Allen-Cahn equation is given by
uₜ = ν uₓₓ + c₁ u + c₃ u³
with ν the diffusivity, c₁ the first order coefficient, and c₃ the
third order coefficient. No matter the spatial dimension, the state
always only has one channel. In higher dimensions, the equation reads
uₜ = ν Δu + c₁ u + c₃ u³
with Δ the Laplacian.
The expected temporal behavior is the formation of sharp interfaces between the two phases. The limit of the solution is a step function that separates the two phases.
Note that the Allen-Cahn is often solved with Dirichlet boundary conditions, but here we use periodic boundary conditions.
Arguments:
num_spatial_dims: The number of spatial dimensionsd.domain_extent: The size of the domainL; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ.num_points: The number of pointsNused to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ.dt: The timestep sizeΔtbetween two consecutive states.diffusivity: The diffusivityν. The default value is5e-3.first_order_coefficient: The first order coefficientc₁. The default value is1.0.third_order_coefficient: The third order coefficientc₃. The default value is-1.0.dealiasing_fraction: The fraction of the highest wavenumbers to dealias. Default is1/2because the default polynomial has a highest degree of 3.order: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2is a good compromise for single precision floats.num_circle_points: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Notes:
- See https://github.com/chebfun/chebfun/blob/db207bc9f48278ca4def15bf90591bfa44d0801d/spin.m#L48 for an example IC of the Allen-Cahn in 1d.
Source code in exponax/stepper/reaction/_allen_cahn.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | |
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u: The state vector, shape(C, ..., N,).
Returns:
u_next: The state vector after one step, shape(C, ..., N,).
Tip
Use this call method together with exponax.rollout to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | |