Cahn-Hilliad¤
exponax.stepper.reaction.CahnHilliard
¤
Bases: BaseStepper
Source code in exponax/stepper/reaction/_cahn_hilliard.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
__init__
¤
__init__(
num_spatial_dims: int,
domain_extent: float,
num_points: int,
dt: float,
*,
diffusivity: float = 0.01,
gamma: float = 0.001,
first_order_coefficient: float = -1.0,
third_order_coefficient: float = 1.0,
order: int = 2,
dealiasing_fraction: float = 1 / 2,
num_circle_points: int = 16,
circle_radius: float = 1.0
)
Timestepper for the d-dimensional (d ∈ {1, 2, 3}
) Cahn-Hilliard
reaction-diffusion equation on periodic boundary conditions. This model
is related to the Allen-Cahn equation. In 1d, it reads
uₜ = ν ∂ₓₓ (c₃ u³ + c₁ u − γ uₓₓ)
with ν
the diffusivity, c₁
the first order coefficient, c₃
the
third order coefficient, and γ
the gamma parameter. The state always
only has one channel. In higher dimensions, the equation reads
uₜ = ν Δ (c₃ u³ + c₁ u - γ Δu)
Since the Laplace operator is self-multiplied, there will be spatial mixing.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.domain_extent
: The size of the domainL
; in higher dimensions the domain is assumed to be a scaled hypercubeΩ = (0, L)ᵈ
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom isNᵈ
.dt
: The timestep sizeΔt
between two consecutive states.diffusivity
: The diffusivityν
.gamma
: The gamma parameterγ
.first_order_coefficient
: The first order coefficientc₁
.third_order_coefficient
: The third order coefficientc₃
.dealiasing_fraction
: The fraction of the highest wavenumbers to dealias. Default is1/2
because the default polynomial has a highest degree of 3.order
: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option0
only solves the linear part of the equation. Use higher values for higher accuracy and stability. The default choice of2
is a good compromise for single precision floats.num_circle_points
: How many points to use in the complex contour integral method to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 16.circle_radius
: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. Default: 1.0.
Notes:
- See https://github.com/chebfun/chebfun/blob/db207bc9f48278ca4def15bf90591bfa44d0801d/spin.m#L89 for an example IC of the Cahn-Hilliard in 1d.
Source code in exponax/stepper/reaction/_cahn_hilliard.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
__call__
¤
__call__(
u: Float[Array, "C ... N"]
) -> Float[Array, "C ... N"]
Perform one step of the time integration for a single state.
Arguments:
u
: The state vector, shape(C, ..., N,)
.
Returns:
u_next
: The state vector after one step, shape(C, ..., N,)
.
Tip
Use this call method together with exponax.rollout
to efficiently
produce temporal trajectories.
Info
For batched operation, use jax.vmap
on this function.
Source code in exponax/_base_stepper.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|