Diffused Noise¤
exponax.ic.DiffusedNoise
¤
Bases: BaseRandomICGenerator
Source code in exponax/ic/_diffused_noise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
__init__
¤
__init__(
num_spatial_dims: int,
*,
domain_extent: float = 1.0,
intensity=0.001,
zero_mean: bool = True,
std_one: bool = False,
max_one: bool = False
)
Randomly generated initial condition consisting of a diffused noise field.
The original noise is drawn in state space with a uniform normal
distribution. After the application of the diffusion operator, the
spectrum decays exponentially quadratic with a rate of intensity
.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.domain_extent
: The extent of the domain. Defaults to1.0
. This indirectly affects the intensity of the noise. It is best to keep it at1.0
and just adjust theintensity
instead.intensity
: The intensity of the noise. Defaults to0.001
.zero_mean
: Whether to zero the mean of the noise.std_one
: Whether to normalize the noise to have a standard deviation of one. Defaults toFalse
.max_one
: Whether to normalize the noise to the maximum absolute value of one. Defaults toFalse
.
Source code in exponax/ic/_diffused_noise.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
__call__
¤
__call__(
num_points: int, *, key: PRNGKeyArray
) -> Float[Array, "1 ... N"]
Source code in exponax/ic/_diffused_noise.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|