Diffused Noise¤
    
              Bases: BaseRandomICGenerator
Source code in exponax/ic/_diffused_noise.py
                | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |  | 
__init__(
    num_spatial_dims: int,
    *,
    domain_extent: float = 1.0,
    intensity=0.001,
    zero_mean: bool = True,
    std_one: bool = False,
    max_one: bool = False
)
Randomly generated initial condition consisting of a diffused noise field.
The original noise is drawn in state space with a uniform normal
distribution. After the application of the diffusion operator, the
spectrum decays exponentially quadratic with a rate of intensity.
Arguments:
- num_spatial_dims: The number of spatial dimensions- d.
- domain_extent: The extent of the domain. Defaults to- 1.0. This indirectly affects the intensity of the noise. It is best to keep it at- 1.0and just adjust the- intensityinstead.
- intensity: The intensity of the noise. Defaults to- 0.001.
- zero_mean: Whether to zero the mean of the noise.
- std_one: Whether to normalize the noise to have a standard deviation of one. Defaults to- False.
- max_one: Whether to normalize the noise to the maximum absolute value of one. Defaults to- False.
Source code in exponax/ic/_diffused_noise.py
              | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |  | 
__call__(
    num_points: int, *, key: PRNGKeyArray
) -> Float[Array, "1 ... N"]
Source code in exponax/ic/_diffused_noise.py
              | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |  |