Sine Waves in 1D¤
exponax.ic.RandomSineWaves1d
¤
Bases: BaseRandomICGenerator
Source code in exponax/ic/_sine_waves_1d.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
__init__
¤
__init__(
num_spatial_dims: int,
*,
domain_extent: float = 1.0,
cutoff: int = 5,
amplitude_range: tuple[float, float] = (-1.0, 1.0),
phase_range: tuple[float, float] = (0.0, 2 * jnp.pi),
offset_range: tuple[float, float] = (0.0, 0.0),
std_one: bool = False,
max_one: bool = False
)
Random generator for initial states described by a collection of sine waves. Only works in 1d.
This is a simplified version of the RandomTruncatedFourierSeries
generator that works in arbitrary dimensions. However, only this
generator can produce a functional representation of the initial
condition.
Arguments:
num_spatial_dims
: The number of spatial dimensions.domain_extent
: The extent of the domain.cutoff
: The cutoff of the wavenumbers. This limits the "complexity" of the initial state. Note that some dynamics are very sensitive to high-frequency information.amplitude_range
: The range of the amplitudes. Defaults to(-1.0, 1.0)
.phase_range
: The range of the phases. Defaults to(0.0, 2π)
.offset_range
: The range of the offsets. Defaults to(0.0, 0.0)
, meaning zero-mean by default.std_one
: Whether to normalize the state to have a standard deviation of one. Defaults toFalse
. Only works if the offset is zero.max_one
: Whether to normalize the state to have the maximum absolute value of one. Defaults toFalse
. Only one ofstd_one
andmax_one
can beTrue
.
Source code in exponax/ic/_sine_waves_1d.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
__call__
¤
__call__(
num_points: int, *, key: PRNGKeyArray
) -> Float[Array, "1 ... N"]
Generate a random initial condition on a grid with num_points
points.
Arguments:
num_points
: The number of grid points in each dimension.key
: A jax random key.
Returns:
u
: The initial condition evaluated at the grid points.
Source code in exponax/ic/_base_ic.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
exponax.ic.SineWaves1d
¤
Bases: BaseIC
Source code in exponax/ic/_sine_waves_1d.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
__init__
¤
__init__(
domain_extent: float,
amplitudes: tuple[float, ...],
wavenumbers: tuple[float, ...],
phases: tuple[float, ...],
offset: float = 0.0,
std_one: bool = False,
max_one: bool = False,
)
A state described by a collection of sine waves. Only works in 1d.
Arguments:
domain_extent
: The extent of the domain.amplitudes
: A tuple of amplitudes.wavenumbers
: A tuple of wavenumbers.phases
: A tuple of phases.offset
: A constant offset.std_one
: Whether to normalize the state to have a standard deviation of one. Defaults toFalse
. Only works if the offset is zero.max_one
: Whether to normalize the state to have the maximum absolute value of one. Defaults toFalse
. Only one ofstd_one
andmax_one
can beTrue
.
Source code in exponax/ic/_sine_waves_1d.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
__call__
¤
__call__(x: Float[Array, '1 N']) -> Float[Array, '1 N']
Source code in exponax/ic/_sine_waves_1d.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|