Convectionยค
exponax.nonlin_fun.ConvectionNonlinearFun
ยค
Bases: BaseNonlinearFun
Source code in exponax/nonlin_fun/_convection.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
__init__
ยค
__init__(
num_spatial_dims: int,
num_points: int,
*,
derivative_operator: Complex[Array, "D ... (N//2)+1"],
dealiasing_fraction: float = 2 / 3,
scale: float = 1.0,
single_channel: bool = False,
conservative: bool = False
)
Performs a pseudo-spectral evaluation of the nonlinear convection, e.g., found in the Burgers equation. In 1d and state space, this reads
๐ฉ(u) = -bโ u (u)โ
with a scale bโ
. The minus arises because Exponax
follows the
convention that all nonlinear and linear differential operators are on
the right-hand side of the equation. Typically, the convection term is
on the left-hand side. Hence, the minus is required to move the term to
the right-hand side.
The typical extension to higher dimensions requires u to have as many channels as spatial dimensions and then gives
๐ฉ(u) = -bโ u โ
โ u
Meanwhile, if you use a conservative form, the convection term is given by
๐ฉ(u) = -1/2 bโ (uยฒ)โ
for 1D and
๐ฉ(u) = -1/2 bโ โ โ
(u โ u)
for 2D and 3D with โ โ
the divergence operator and the outer product
u โ u
.
Another option is a "single-channel" hack requiring only one channel no matter the spatial dimensions. This reads
๐ฉ(u) = -bโ 1/2 (1โ โ
โ)(uยฒ)
for the conservative form and
๐ฉ(u) = -bโ u (1โ โ
โ)u
for the non-conservative form.
Arguments:
num_spatial_dims
: The number of spatial dimensionsd
.num_points
: The number of pointsN
used to discretize the domain. This includes the left boundary point and excludes the right boundary point. In higher dimensions; the number of points in each dimension is the same.derivative_operator
: A complex array of shape(d, ..., N//2+1)
that represents the derivative operator in Fourier space.dealiasing_fraction
: The fraction of the highest resolved modes that are not aliased. Defaults to2/3
which corresponds to Orszag's 2/3 rule.scale
: The scalebโ
of the convection term. Defaults to1.0
.single_channel
: Whether to use the single-channel hack. Defaults toFalse
.conservative
: Whether to use the conservative form. Defaults toFalse
.
Source code in exponax/nonlin_fun/_convection.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
__call__
ยค
__call__(
u_hat: Complex[Array, "C ... (N//2)+1"]
) -> Complex[Array, "C ... (N//2)+1"]
Source code in exponax/nonlin_fun/_convection.py
239 240 241 242 243 244 245 246 247 248 249 250 251 |
|