Presenting all the built-in solvers working in 3d¤
This notebook is a WIP and it requires the VAPE volume render (pip install vape4d
) which only runs on GPUs.
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import exponax as ex
from IPython.display import HTML
Linear PDEs¤
Advection¤
\[
\frac{\partial u}{\partial t} + \vec{c} \cdot \nabla u = 0
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.02
# Can also supply a scalar to use the same value for both dimensions
VELOCITY = jnp.array([-0.4, 1.0, 0.1])
advection_stepper = ex.stepper.Advection(
3, DOMAIN_EXTENT, NUM_POINTS, DT, velocity=VELOCITY
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
advection_trj = ex.rollout(advection_stepper, 40, include_init=True)(u_0)
advection_ani = ex.viz.animate_state_3d(advection_trj)
HTML(advection_ani.to_html5_video())
Diffusion¤
\[
\frac{\partial u}{\partial t} = \nu \Delta u
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
# See next section for anisotropic diffusion
NU = 0.01
anisotropic_diffusion_stepper = ex.stepper.Diffusion(
3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
diffusion_trj = ex.rollout(anisotropic_diffusion_stepper, 40, include_init=True)(u_0)
diffusion_ani = ex.viz.animate_state_3d(diffusion_trj)
HTML(diffusion_ani.to_html5_video())
Anisotropic Diffusion¤
\[
\frac{\partial u}{\partial t} = \nabla \cdot \left( A \nabla u \right)
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
# Can also supply a 2d vector for diagonal diffusivity. For full anisotropy, the
# matrix must be positive definite.
NU = jnp.array([[0.005, 0.003, 0.0001], [0.003, 0.04, 0.0002], [0.0001, 0.0002, 0.01]])
anisotropic_diffusion_stepper = ex.stepper.Diffusion(
3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
anisotropic_diffusion_trj = ex.rollout(
anisotropic_diffusion_stepper, 40, include_init=True
)(u_0)
anisotropic_diffusion_ani = ex.viz.animate_state_3d(anisotropic_diffusion_trj)
HTML(anisotropic_diffusion_ani.to_html5_video())
Advection-Diffusion¤
\[
\frac{\partial u}{\partial t} + \vec{c} \cdot \nabla u = \nu \Delta u
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
# Can supply up to a vector for the advection speed, and up to a matrix for
# anisotropic diffusion
velocity = 1.0
diffusivity = 0.01
advection_diffusion_stepper = ex.stepper.AdvectionDiffusion(
3, DOMAIN_EXTENT, NUM_POINTS, DT, velocity=velocity, diffusivity=diffusivity
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
advection_diffusion_trj = ex.rollout(
advection_diffusion_stepper, 40, include_init=True
)(u_0)
advection_diffusion_ani = ex.viz.animate_state_3d(advection_diffusion_trj)
HTML(advection_diffusion_ani.to_html5_video())
Dispersion¤
\[
\frac{\partial u}{\partial t} + \vec{\xi} \cdot (\nabla \odot \nabla \odot \nabla) u = 0
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
# Can also supply a vector for different dispersivity per dimension
DISPERSIVITY = 0.001
dispersion_stepper = ex.stepper.Dispersion(
3, DOMAIN_EXTENT, NUM_POINTS, DT, dispersivity=DISPERSIVITY
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT) * jnp.cos(
2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT
) * jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT) + jnp.sin(
3 * 2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT
) * jnp.sin(
4 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT
) * jnp.cos(
4 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT
)
dispersion_trj = ex.rollout(dispersion_stepper, 40, include_init=True)(u_0)
dispersion_ani = ex.viz.animate_state_3d(dispersion_trj)
HTML(dispersion_ani.to_html5_video())
Hyper-Diffusion¤
\[
\frac{\partial u}{\partial t} = \nu \Delta^2 u
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
HYPER_DIFFUSIVITY = 0.0001
hyper_diffusion_stepper = ex.stepper.HyperDiffusion(
3, DOMAIN_EXTENT, NUM_POINTS, DT, hyper_diffusivity=HYPER_DIFFUSIVITY
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
hyper_diffusion_trj = ex.rollout(hyper_diffusion_stepper, 40, include_init=True)(u_0)
hyper_diffusion_ani = ex.viz.animate_state_3d(hyper_diffusion_trj)
HTML(hyper_diffusion_ani.to_html5_video())
Nonlinear PDEs¤
Burgers (non-conservative)¤
\[
\frac{\partial u}{\partial t} + (u \cdot \nabla) u = \nu \Delta u
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
NU = 0.005
burgers_stepper = ex.stepper.Burgers(3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
# Burgers has two channels!
u_0 = jnp.concatenate(
[
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
jnp.cos(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.sin(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.cos(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
jnp.sin(3 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(3 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(4 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
]
)
burgers_trj = ex.rollout(burgers_stepper, 40, include_init=True)(u_0)
burgers_ani = ex.viz.animate_state_3d_facet(
burgers_trj,
grid=(1, 3),
figsize=(8, 3),
)
HTML(burgers_ani.to_html5_video())
Burgers (conservative)¤
\[
\frac{\partial u}{\partial t} + \frac{1}{2} \nabla \cdot \left( u \otimes u \right) = \nu \Delta u
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
NU = 0.01
burgers_stepper_conservative = ex.stepper.Burgers(
3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU, conservative=True
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
# Burgers has two channels!
u_0 = jnp.concatenate(
[
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
jnp.cos(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.sin(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.cos(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
jnp.sin(3 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(3 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(4 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT),
]
)
burgers_trj_conservative = ex.rollout(
burgers_stepper_conservative, 40, include_init=True
)(u_0)
burgers_ani_conservative = ex.viz.animate_state_3d_facet(
burgers_trj_conservative,
grid=(1, 3),
figsize=(8, 3),
)
HTML(burgers_ani_conservative.to_html5_video())
Single-Channel Burgers¤
This is a hack to not have the channel dimension grow together with the spatial dimension.
\[ \frac{\partial u}{\partial t} + \frac{1}{2} (\vec{1} \cdot \nabla)
(u^2) = \nu \Delta u \]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 0.01
NU = 0.01
single_channel_burgers_stepper = ex.stepper.Burgers(
3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU, single_channel=True
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
single_channel_burgers_trj = ex.rollout(
single_channel_burgers_stepper, 40, include_init=True
)(u_0)
single_channel_burgers_ani = ex.viz.animate_state_3d(single_channel_burgers_trj)
HTML(single_channel_burgers_ani.to_html5_video())
Kuramoto-Sivashinsky (KS)¤
The combustion format (using the gradient norm) generalizes nicely to higher dimensions
\[
\frac{\partial u}{\partial t} + \frac{1}{2} \| \nabla u \|_2^2 + \Delta u + \Delta^2 u = 0
\]
DOMAIN_EXTENT = 30.0
NUM_POINTS = 100
DT = 0.1
ks_stepper = ex.stepper.KuramotoSivashinsky(3, DOMAIN_EXTENT, NUM_POINTS, DT)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
# IC is irrelevant
u_0 = jax.random.normal(jax.random.PRNGKey(0), (1, NUM_POINTS, NUM_POINTS, NUM_POINTS))
u_0 -= jnp.mean(u_0)
warmed_up_u_0 = ex.repeat(ks_stepper, 500)(u_0)
ks_trj = ex.rollout(ks_stepper, 40, include_init=True)(warmed_up_u_0)
ks_ani = ex.viz.animate_state_3d(ks_trj, vlim=(-6, 6))
HTML(ks_ani.to_html5_video())
Korteweg-de Vries (KdV)¤
Works best with single channel hack
\[
\frac{\partial u}{\partial t} + \frac{1}{2} (\vec{1} \cdot \nabla) u^2 + \vec{1} \cdot (\nabla \odot \nabla \odot \nabla) u = 0
\]
DOMAIN_EXTENT = 20.0
NUM_POINTS = 100
DT = 0.05
HYPER_NU = 0.03
kdv_stepper = ex.stepper.KortewegDeVries(
3,
DOMAIN_EXTENT,
NUM_POINTS,
DT,
single_channel=True,
hyper_diffusivity=HYPER_NU,
)
grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)
u_0 = (
jnp.sin(2 * jnp.pi * grid[0:1] / DOMAIN_EXTENT)
* jnp.cos(2 * 2 * jnp.pi * grid[1:2] / DOMAIN_EXTENT)
* jnp.sin(3 * 2 * jnp.pi * grid[2:3] / DOMAIN_EXTENT)
)
kdv_trj = ex.rollout(kdv_stepper, 40, include_init=True)(u_0)
kdv_ani = ex.viz.animate_state_3d(kdv_trj)
HTML(kdv_ani.to_html5_video())
Reaction-Diffusion PDEs¤
Fisher-KPP¤
\[
\frac{\partial u}{\partial t} = \nu \Delta u + r u (1 - u)
\]
DOMAIN_EXTENT = 10.0
NUM_POINTS = 100
DT = 0.01
DIFFUSIVITY = 0.01
REACTIVITY = 10.0
fisher_kpp_stepper = ex.stepper.reaction.FisherKPP(
3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=DIFFUSIVITY, reactivity=REACTIVITY
)
ic_gen = ex.ic.ClampingICGenerator(ex.ic.RandomTruncatedFourierSeries(3), limits=(0, 1))
u_0 = ic_gen(100, key=jax.random.PRNGKey(0))
fisher_kpp_trj = ex.rollout(fisher_kpp_stepper, 40, include_init=True)(u_0)
fisher_kpp_ani = ex.viz.animate_state_3d(fisher_kpp_trj)
HTML(fisher_kpp_ani.to_html5_video())
Gray-Scott¤
\[
\begin{aligned}
\frac{\partial u_0}{\partial t} &= \nu_0 \Delta u_0 - u_0 u_1^2 + f (1 - u_0) \\
\frac{\partial u_1}{\partial t} &= \nu_1 \Delta u_1 + u_0 u_1^2 - (f + k) u_1
\end{aligned}
\]
DOMAIN_EXTENT = 1.0
NUM_POINTS = 100
DT = 30.0
DIFFUSIVITY_0 = 2e-5
DIFFUSIVITY_1 = 1e-5
FEED_RATE = 0.04
KILL_RATE = 0.06
gray_scott_stepper = ex.RepeatedStepper(
ex.stepper.reaction.GrayScott(
3,
DOMAIN_EXTENT,
NUM_POINTS,
DT / 30,
diffusivity_1=DIFFUSIVITY_0,
diffusivity_2=DIFFUSIVITY_1,
feed_rate=FEED_RATE,
kill_rate=KILL_RATE,
),
30,
)
u_0 = ex.ic.RandomMultiChannelICGenerator(
[
ex.ic.RandomGaussianBlobs(3, one_complement=True),
ex.ic.RandomGaussianBlobs(3),
]
)(NUM_POINTS, key=jax.random.PRNGKey(0))
gray_scott_trj = ex.rollout(gray_scott_stepper, 40, include_init=True)(u_0)
gray_scott_ani = ex.viz.animate_state_3d_facet(
gray_scott_trj,
grid=(1, 2),
figsize=(7, 3),
)
HTML(gray_scott_ani.to_html5_video())
Swift-Hohenberg¤
\[
\frac{\partial u}{\partial t} = r u - (1 + \Delta)^2 u + u^2 - u^3
\]
DOMAIN_EXTENT = 20.0 * jnp.pi
NUM_POINTS = 100
DT = 1.0
swift_hohenberg_stepper = ex.RepeatedStepper(
ex.stepper.reaction.SwiftHohenberg(3, DOMAIN_EXTENT, NUM_POINTS, DT / 10),
10,
)
u_0 = ex.ic.RandomTruncatedFourierSeries(3, max_one=True)(
NUM_POINTS, key=jax.random.PRNGKey(0)
)
swift_hohenberg_trj = ex.rollout(swift_hohenberg_stepper, 40, include_init=True)(u_0)
swift_hohenberg_ani = ex.viz.animate_state_3d(swift_hohenberg_trj)
HTML(swift_hohenberg_ani.to_html5_video())
All together¤
joint_trj = jnp.concatenate(
[
advection_trj,
diffusion_trj,
anisotropic_diffusion_trj,
advection_diffusion_trj,
dispersion_trj,
hyper_diffusion_trj,
burgers_trj,
burgers_trj_conservative,
single_channel_burgers_trj,
kdv_trj,
ks_trj,
fisher_kpp_trj,
gray_scott_trj,
swift_hohenberg_trj,
],
axis=1,
)
joint_ani = ex.viz.animate_state_3d_facet(
joint_trj,
titles=[
"Advection",
"Diffusion",
"Anisotropic Diffusion",
"Advection-Diffusion",
"Dispersion",
"Hyper-Diffusion",
"Burgers channel 1",
"Burgers channel 2",
"Burgers channel 3",
"Burgers (Conservative)\nchannel 1",
"Burgers (Conservative)\nchannel 2",
"Burgers (Conservative)\nchannel 3",
"Burgers single channel",
"KdV",
"KS",
"Decaying Turbulence",
"Kolmogorov Flow",
"Fisher-KPP",
"Gray-Scott 1",
"Gray-Scott 2",
"Swift-Hohenberg",
"",
"",
],
grid=(3, 7),
figsize=(17, 10),
)
HTML(joint_ani.to_html5_video())