

Autodiff & Adjoints

The machinery behind differentiable physics and deep learning

Felix Koehler

Motivation - Linear Regression

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 2 / 60

Linear Regression - Matrix Gradient

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 3 / 60

Multi-Layer Perceptron

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 4 / 60

Motivation

- Neural Networks are big nested compute graphs with many free parameters
- We fit these parameters using first-order optimizers
- Autodiff provides the gradients
- If physics $\mathcal P$ is part of the gradient flow, it has to be differentiated

Outline

1. Autodiff from a more General Perspective

- i. A functional Viewpoint on Autodiff
- ii. Vector-mode Autodiff (BLAS-level)
- iii. Hierarchies in Autodiff
- iv. Adjoints/Continuous Sensitivities (PDE-level)
- v. History of Automatic Differentiation
- 2. Specialities of Differentiable Physics
- 3. Advanced topics

A General Perspective on Autodiff

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 7 / 60

Scalar Automatic Differentiation

$$
y=f(x)=\sin(\exp(x^2))=l(m(n(x)))
$$

$$
\begin{aligned} z^{[0]}&=x\\ z^{[1]}&=n(z^{[0]})=(z^{[0]})^2\\ z^{[2]}&=m(z^{[1]})=\exp(z^{[1]})\\ z^{[3]}&=l(z^{[2]})=\sin(z^{[2]})\\ y&=z^{[3]} \end{aligned}
$$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 8 / 60

Two major ways of bracketing

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial z^{[3]}}\frac{\partial z^{[3]}}{\partial z^{[2]}}\frac{\partial z^{[2]}}{\partial z^{[1]}}\frac{\partial z^{[1]}}{\partial z^{[0]}}\frac{\partial z^{[0]}}{\partial x}
$$

Pushforward = Jvp

$$
\frac{\partial y}{\partial x} \dot{x} = \frac{\partial y}{\partial z^{[3]}} \left(\frac{\partial z^{[3]}}{\partial z^{[2]}} \left(\frac{\partial z^{[2]}}{\partial z^{[1]}} \left(\frac{\partial z^{[1]}}{\partial z^{[0]}} \frac{\partial z^{[0]}}{\partial x} \dot{x} \right) \right) \right)
$$

In $[1]$: $f =$ lambda x: jnp.sin(jnp.exp($x^{**}2$))

```
In [2]: jax.jvp(f, (0.3,), (1.0,))
(DeviceArray(0.88854975, dtype=float32, weak_type=True),
DeviceArray(0.3011914, dtype=float32, weak_type=True))
```
- $\mathcal{F}(f,(x,),(\dot{x},)) = ((y,),(\dot{y}))$
- \bullet $OPS(\mathcal{F}(f,(x,),(\dot{x},))) \leq 2.5 \cdot OPS(f(x))$

Pullback = vJp

$$
\bar y\frac{\partial y}{\partial x}=\left(\left(\left(\left(\bar y\frac{\partial y}{\partial z^{[3]}}\right)\frac{\partial z^{[3]}}{\partial z^{[2]}}\right)\frac{\partial z^{[2]}}{\partial z^{[1]}}\right)\frac{\partial z^{[1]}}{\partial z^{[0]}}\right)\frac{\partial z^{[0]}}{\partial x}
$$

In $[3]$: output, vjp_fun = jax.vjp(f, 0.3)

```
In [4]: vjp_fun(1.0)Out[4]: (DeviceArray(0.3011914, dtype=float32, weak_type=True),)
```

$$
\bullet \ \ \mathcal{B}(f,(x,),(\bar{y},))=((y,),(\bar{x},))
$$

 \bullet *OPS*($\mathcal{B}(f,(x,),(\bar{y},))) \leq 4.0 \cdot$ *OPS*($f(x)$)

is a system to combine:

- Pushforward/Jvp rules for atomic operations into pushforward/Jvp
- Pullback/vJp rules for atomic operations into pullback/vJp

for larger computational graphs

At some point, we have to implement symbolic derivatives for atomic operations

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 13 / 60

via scalar operations is straightforward

each operation, e.g., matrix-vector multiplication, can be written in scalar operations (using loops, etc.)

$$
\bullet \, \, y = f(x) = [x_0^3 \sin(x_1);x_2 x_1^2]
$$

$$
\bullet\,\,x\in\mathbb{R}^3, y\in\mathbb{R}^2\text{ hence }\tfrac{\partial y}{\partial x}\in\mathbb{R}^{2\times 3}
$$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 14 / 60

Vector Pushforward / Vector Jvp

$$
\mathcal{F}(f,(x,),(\dot{x}))=((y,),(\dot{y}=\frac{\partial y}{\partial x}\dot{x}))
$$

```
In [5]: f = lambda x: jnp.array([x[0]^{**}3 * jnp.sin(x[1]), x[2]^{**}[1]^{**}2])
In [6]: primal = jnp.array([1.0, 2.0, 3.0])
In [7]: tangent = jnp.array([1.0, 0.0, 0.0])
In [8]: jax.jvp(f, (primal,), (tangent,))
Out[8]:
(DeviceArray([ 0.9092974, 12. ], dtype=float32),
DeviceArray([2.7278922, 0. ], dtype=float32))
```
Vector Pullback / Vector vjp

$$
\mathcal{B}(f,(x,),(\bar{y}))=((y,),(\bar{x}=\left(\bar{y}^T\frac{\partial y}{\partial x}\right)^T,))
$$

In $[9]$: output, vjp_fun = jax.vjp(f, primal)

```
In [9]: cotangent = jnp.array([1.0, 0.0])
```
In [10]: vjp_fun(cotangent) Out[10]: (DeviceArray([2.7278922 , -0.41614684, 0. [], dtype=float32),)

Detour: Mult. Matrices with Unit Vectors

$$
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 \\ 0 \end{bmatrix}^T \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}^T
$$

June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 17 / 60

Obtaining Jacobians

- Now assume $f:\mathbb{R}^N\rightarrow\mathbb{R}^M$
	- $\mathcal{F}(f,(x,),(e_{i}))$ gives the i -th column of the Jacobian J_{f}
	- $\mathcal{B}(f,(x,),(e_i))$ gives the i -th row of the Jacobian J_f
- Hence, build full Jacobian $J \in \mathbb{R}^{M \times N}$ by:
	- batching N pushforward evaluations
	- batching M pullback evaluations

Obtaining Jacobians II

- Consequentially:
	- $M>N$: forward-mode Jacobian more efficient
	- $M < N$: reverse-mode Jacobian more efficient (DL: $M=1 \rightarrow \mathcal{O}(1)$)
	- $M \approx N$: forward-mode Jacobian more efficient due to smaller overhead

Example: gemv General Matrix-Vector multiplication

$$
y=f(x,A,b)=Ax+b\\
$$

We could differentiate through the double for-loop, but we could also:

$$
\circ\ \mathcal{F}(f,(x,A,b),(\dot{x},\dot{A},\dot{b}))=((Ax+b,),(A\dot{x}+\dot{A}x+\dot{b},))
$$

$$
\mathrel{\circ}\; \mathcal{B}(f,(x,A,b),(\bar{y},)) = ((Ax+b,),(W^T\bar{y},\bar{y}x^T,\bar{y},))
$$

JAX, TF, PyTorch, Zygote, etc. already do all that...

Express primitive rules again in terms of atomic operations

<https://fkoehler.site/autodiff-table/>

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 21 / 60

Hierachies

Float-Level BLAS-Level PDE-Level \bullet

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 22 / 60

Compute Graph with Diff. Physics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 23 / 60

Compute Graph with Diff. Physics II

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 24 / 60

How to differentiate through PDEs?

Continuous Adjoint Advection Equation

• Primal Physics

$$
\bullet\,\, u = \mathcal{P}(\theta) = \{\text{integrate from}\,\, t=0\,\, \text{to}\,\, t=\Delta t \begin{cases} \partial_t u + \partial_x u &= 0 \\ u(t,0) &= u(t,L) \\ u(0,x) &= \theta(x) \end{cases}
$$

• Adjoint Physics

$$
\bullet\,\, \bar\theta = \bar{\mathcal{P}}(\bar u) = \{\text{integrate from}\,\, t=\Delta t\,\,\text{to}\,\, t=0 \, \begin{cases} \partial_t \lambda - \partial_x \lambda &= 0 \\ \lambda(t,0) &= \lambda(t,L) \\ \lambda(\Delta t,x) &= \bar u(x) \end{cases}
$$

Discretize-then-Optimize (DtO)

Optimize-then-Discretize (OtD)

• But really ... it is a spectrum

- BLAS-level rules are the OtD for scalar-mode AD
- PDE-level rules are the OtD for tensor-mode AD

History

* Unfortunately, I lost the source of

• Loosely speaking: Manual code optimization vs. gcc -03

My advice: Use BLAS-level DTO, but be aware of its shortcomings.Switch to fully continuous OtD only for hardcore performance optimization.

Specialities of Differentiable Physics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 32 / 60

Example: NS Pressure-Poisson Solve

```
from phi.flow import *
velocity = StaggeredGrid(\theta, x=64, y=64, bounds=Box(x=100, y=100))
smoke = CenteredGrid(0, ZERO_GRADIENT, x=200, y=200, bounds=Box(x=100, y=100))
INFLOW = 0.2 * resample(Sphere(x=50, y=9.5, radius=5), to=smoke, soft=True)
pressure = None
def step(v, s, p, dt=1.):
    s = advect.mac\_cormack(s, v, dt) + INFLOWbuoyancy = resample(s *(0, 0.1), to=v)
    v = advect.semi_lagrangian(v, v, dt) + buoyancy * dt
    ### ---> Linsolve start <---
    v, p = fluid.make_incompressible(v, (), Solve(x0=p))
    ### ---> Linsolve end <---
    return v, s, p
for \_ in range(10):
    velocity, smoke, pressure = step(velocity, smoke, pressure)
```
https://github.com/tum-pbs/PhiFlow/blob/c4cec7ba9e62209c7bcfefeba7d87a42fa8a8193/demos/smoke_plume.py

Pressure-Poisson Solve

- Leads to a Poisson equation for the pressure: $\nabla^2 p = \nabla \cdot \mathbf{v}^*$
- To then correct the velocity field: $\mathbf{v}^{**}=\mathbf{v}^*-\nabla p$
- Discrete form: $Ap_h = b_h$

Conjugate Gradient Algorithm

$$
\mathbf{r}_0:=\mathbf{b}-\mathbf{A}\mathbf{x}_0 \qquad \mathbf{p}_0:=\mathbf{r}_0 \qquad k:=0
$$

repeat

$$
\alpha_k := \frac{\mathbf{r}_k^{\mathsf{T}} \mathbf{r}_k}{\mathbf{p}_k^{\mathsf{T}} \mathbf{A} \mathbf{p}_k} \qquad \mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k \qquad \mathbf{r}_{k+1} := \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k
$$

if \mathbf{r}_{k+1} is sufficiently small, then exit loop

$$
\beta_k := \frac{\mathbf{r}_{k+1}^{\mathsf{T}} \mathbf{r}_{k+1}}{\mathbf{r}_k^{\mathsf{T}} \mathbf{r}_k} \qquad \mathbf{p}_{k+1} := \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k
$$
return \mathbf{x}_{k+1} as the result

CG Compute Graph

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 36 / 60

CG Compute Graph with Reverse Pass

Differentiating through CG Solve

1. Unroll all iterations, build compute graph and transform (**Unrolled Diff**):

- \blacktriangleright Exact derivative of all operations \circ
- \blacktriangleright Automatic, no modifications of code \circ
- \circ X Need to tape all iterations
- \circ \times Derivative Convergence might be different from primal convergence!
- 2. Find custom adjoint rule (what PhiFlow does) (**Implicit Diff**):
	- $\circ \vee$ Can be faster
	- Less memory consumption in reverse mode \circ
	- \circ X Manual effort, because requires fiddling with the autodiff engine
	- \circ X Might be hard to get right

vJp rule for Linear System Solving

Primal

$$
\mathbf{x} = \{ \text{solve } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ for } \mathbf{x} \}
$$

Reverse Rule

$$
\lambda = \{ \text{solve } \mathbf{A}^T \lambda = \bar{\mathbf{x}} \text{ for } \lambda \}
$$

$$
\bar{\mathbf{b}} = \lambda
$$

$$
\bar{\mathbf{A}} = -\lambda \mathbf{x}^T
$$

Adjoint rules is again a linsolve but with **A***^T*

Registering linsolve custom adjoint rule

```
def _cg_solve(A, b):
 # Solve Ax = b@jax.custom_vjp
def cg_solve(A, b):
  x = \text{cg\_solve}(A, b)return x
def cg_solve_fwd(A, b):
  x = \text{cg\_solve}(A, b)return x, (A, x)
def cg_solve_bwd(res, g):
  A, x = reslam = \_{cg\_solve(A.T, g)}return (-jnp.outer(lam, x), lam)
```

```
-\nabla \cdot ((1+u^2)\nabla u) = f(\theta) \quad \text{in} \, \Omega, \quad u=1 \quad \text{on} \, \Gamma_D, \quad \nabla u \cdot n = 0 \quad \text{on} \, \Gamma_N
```

```
from dolfin import *
```

```
class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary
```

```
mesh = UnitSquareMesh(32, 32); V = FunctionSpace(mesh,
"CG"
, 1)
g = Constant(1.0); bc = DirichletBC(V, g, DirichletBoundary())
u = Function(V); v = TestFunction(V); f = Expression("x[0]*sin(x[1])")F = inner((1 + u^{**2})' grad(u), grad(v))^*dx - f^{*}v^{*}dxsolve(F = 0, u, bc, solver_parameters={"newton_solver":
```
{"relative_tolerance": 1e-6}})

Newton-Raphson Algorithm

 $\mathbf{u}_0 \leftarrow$ initial guess

repeat

 $\mathbf{r}_k = \mathbf{F}(\mathbf{u}_k)$ if r_k is sufficiently small, then exit loop $\text{linsolve} \quad \frac{\partial \mathbf{L}}{\partial} \begin{vmatrix} \Delta \mathbf{u}_k = -\mathbf{r}_k \end{vmatrix}$ ∂**u** ∂**F u***^k* $k = -{\bf r}_k$ $\mathbf{u}_{k+1} = \mathbf{u}_k + \Delta \mathbf{u}_k$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 42 / 60

Unroll-Diff through Newton-Raphson

- 1. Unroll all iterations, build compute graph and transform (assume you do implicit diff to all linsolves):
	- \blacktriangleright Exact derivative of all operations (given exact linsolves) \circ
	- Automatic, no modifications of code (given there is an implicit rule for \circ the linsolve)
	- \circ X Need to tape all iterations
	- \circ X Derivative Convergence might be different from primal convergence!
	- **Reverse pass has to solve as many linear systems as primal pass**

Implicit-Diff through Newton-Raphson

2. Find custom implicit rule:

- **V** Certainly be faster because needs only one linsolve \circ
- **V** Less memory consumption in reverse-mode \circ
- \circ X Intrusive because requires fiddling with the autodiff engine
- \circ X Might be hard to get right

Nonlinear Solve Custom Adjoint Rule

Primal

$$
\mathbf{x} = \{ \text{solve } \mathbf{g}(\mathbf{x}, \theta) = \mathbf{0} \text{ for } \mathbf{x} \}
$$

Reverse Rule

$$
\lambda = \left\{ \text{solve } \left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}} \right)^T \lambda = \bar{\mathbf{x}} \text{ for } \lambda \right\}
$$

$$
\bar{\theta} = -\left(\frac{\partial \mathbf{g}}{\partial \theta} \right)^T \lambda
$$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 45 / 60

General Insights and Tips

- The Jvp/vJp propagation will always be linear!
- Especially if primal is a nonlinear solve, implicit propagation solve (for forward and reverse mode) will be linear solve and hence way cheaper
- Custom implicit rules require informing the autodiff engine:
	- JAX already comes with custom rules for jax.numpy.linalg.solve and $jax.skipy.sparse.linalg.XXX$ with $XXX \in \{ cg, bisgestab, gmmes\}$
	- \circ If you have an algebra function calling into a third-party library, always custom rule (cannot open black box):
		- **Promising tool: [Enzyme](https://enzyme.mit.edu/)**

Implicit Primitive Rules

<https://fkoehler.site/implicit-autodiff-table/>

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 47 / 60

Levels of hierarchy (revisited)

Advanced Topics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 49 / 60

Cont. Repr. for NNs

- Neural ODEs (Chen et [al.](https://arxiv.org/abs/1806.07366) 2018):
	- \circ Inference via integration of an ODE (with continuous adjoint)
- Deep Equilibrium Networks (Bai et [al.](https://arxiv.org/abs/1909.01377) 2019):
	- Inference via solution to a r o o t - fi n din g p r o ble m (wit h adjoint linear solve)

Auto-Implicit Dif

- [Blo](https://arxiv.org/abs/2105.15183)ndel et al. 2022 "Efficient a n d M o d ula r I m [plicit](https://arxiv.org/abs/2105.15183) [Diff](https://arxiv.org/abs/2105.15183)erentiation"
- Given an optimality condition, automatically register (co-)tanget propagation rules wit hin J A X
	- Internally performs matrix-free linear solves with linearizing the o p tim alit y c o n ditio n

```
X_train, y_train = load_data() # Load features and labels
```

```
def f(x, theta): # Objective function
 residual = inp.dot(X_train, x) - y_trainreturn (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2
```

```
# Since f is differentiable and unconstrained, the optimality
# condition F is simply the gradient of f in the 1st argument
F = jax \cdot grad(f, argnums=0)
```

```
@custom(root(F)def ridge_solver(init_x, theta):
  del init_x # Initialization not used in this solver
  XX = jnp.dot(X_train.T, X_train)
  Xy = jnp.dot(X_train.T, y_train)I = \text{inp.eye(X_train.shape[1])} # Identity matrix
  # Finds the ridge reg solution by solving a linear system
  return jnp.linalg.solve(XX + \text{theta} * I, Xy)
```

```
init x = Noneprint(jax.jacobian(ridge_solver, argnums=1)(init_x, 10.0))
```
Curse of Unrolling

Even if your primal converges (exponentially) linear, the derivative (=Jacobian) might not initially (Scieur et al. "The Curse of [Unrolling:](https://arxiv.org/abs/2209.13271) ...")

To ensure convergence of the Jacobian with gradient descent, we must either 1) accept that the algorithm has a burn-in period proportional to the condition number 1/κ, or 2) choose a small step size that will slow down the algorithm's asymptotic convergence

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 52 / 60

Strategic Gradient Cuts

Strategic Gradient Cuts II

Strategic Gradient Cuts III

"Stabilizing [Backpropagation](https://arxiv.org/abs/2405.02041) Through Time ..." by Schnell & Thuerey 2024

Additional Topics

- Approximate Gradients (not fully execute iterative processes):
	- "Hyperparameter optimization with approximate gradient" ([Pedregosa](https://arxiv.org/abs/1602.02355) [2016\)](https://arxiv.org/abs/1602.02355)
	- "One-step differentiation of iterative algorithms" [\(Bolte](https://arxiv.org/abs/2305.13768) et al. 2023)
- Automated Continuous Adjoint Derivation:
	- [Dolfin-Adjoint](https://dolfin-adjoint.github.io/dolfin-adjoint/) for FEniCs
- Avoiding Differentiable Physics:
	- "How Temporal Unrolling Supports Neural Physics Simulators" ([List](https://arxiv.org/abs/2402.12971) et al. [2023\)](https://arxiv.org/abs/2402.12971)

There are so many cool topics and open questions!

Feel free to contact me if you want to discuss any of these topics or have any questions!

Conclusion

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 58 / 60

- Autodiff is a system to combine pushforward/jvp and pullback/vjp rules for atomic operations
	- \circ We need to define atomic operations with symbolic derivatives
	- Atomic operations can be on scalar-level, BLAS-level or continuous PDElevel (with a spectrum in-between)
	- Taking gradients is syntactic sugar for pushforward and pullback
- Always think input-output: Even continuous adjoints will eventually have discrete inputs and outputs
- Machine Learning often works well with slightly inaccurate gradients (stochastic anyway); just get the gradients flowing \odot

Additional Resources

-
- The definitive book on the mathematical perspective of Autodiff: ["Evaluating](https://epubs.siam.org/doi/book/10.1137/1.9780898717761) [Derivatives:](https://epubs.siam.org/doi/book/10.1137/1.9780898717761) ..." by Griewank and Walther
- A more digestible read for machine learning: "Automatic [Differentiation](https://arxiv.org/abs/1502.05767) in Machine [Learning:](https://arxiv.org/abs/1502.05767) ..." by Baydin et al.
- Refresher on Backpropagation from the modern ["Understanding](https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c) Deep [Learning"](https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c) Book by Prince (Chapter 7 "Gradients and Initialization")
- JAX tutorial on [Autodiff](https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c) and custom [primtive](https://jax.readthedocs.io/en/latest/automatic-differentiation.html) rules
- Matthew [Johnson's](https://videolectures.net/deeplearning2017_johnson_automatic_differentiation/) talk on Autograd
- [Chapter](https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/) 8 and [Chapter](https://book.sciml.ai/notes/10-Basic_Parameter_Estimation-Reverse-Mode_AD-and_Inverse_Problems/) 10 of Chris Rackauckas' [SciML](https://book.sciml.ai/) Book
- [ChainRules.jl](https://juliadiff.org/ChainRulesCore.jl/stable/) ecosystem in Julia