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Linear Regression - Matrix Gradient
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or from
subsequent
computation

Parameter Space

Data Space

Multi-Layer Perceptron
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NN

Neural Networks are big
nested compute graphs with
many free parameters
We fit these parameters using
first-order optimizers
Autodiff provides the gradients
If physics  is part of the
gradient flow, it has to be
differentiated

Motivation

P
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1. Autodiff from a more General Perspective
i. A functional Viewpoint on Autodiff
ii. Vector-mode Autodiff (BLAS-level)
iii. Hierarchies in Autodiff
iv. Adjoints/Continuous Sensitivities (PDE-level)
v. History of Automatic Differentiation

2. Specialities of Differentiable Physics
3. Advanced topics

Outline
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A General Perspective on Autodiff
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y = f(x) = sin(exp(x )) =2 l(m(n(x)))

​ ​

z[0]

z[1]

z[2]

z[3]

y

= x

= n(z ) = (z )[0] [0] 2

= m(z ) = exp(z )[1] [1]

= l(z ) = sin(z )[2] [2]

= z[3]

Scalar Automatic Differentiation
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In [1]: f = lambda x: jnp.sin(jnp.exp(x**2))

In [2]: jax.jvp(f, (0.3,), (1.0,))
(DeviceArray(0.88854975, dtype=float32, weak_type=True),
 DeviceArray(0.3011914, dtype=float32, weak_type=True))

Pushforward = Jvp

F(f , (x, ), ( , )) =ẋ ((y, ), ( ​))ẏ

OPS(F(f , (x, ), ( , ))) ≤ẋ 2.5 ⋅ OPS(f(x))
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In [3]: output, vjp_fun = jax.vjp(f, 0.3)

In [4]: vjp_fun(1.0)
Out[4]: (DeviceArray(0.3011914, dtype=float32, weak_type=True),)

Pullback = vJp

B(f , (x, ), ( ​, )) =ȳ ((y, ), ( , ))x̄

OPS(B(f , (x, ), ( ​, ))) ≤ȳ 4.0 ⋅ OPS(f(x))
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is a system to combine:

Pushforward/Jvp rules for atomic operations into pushforward/Jvp
Pullback/vJp rules for atomic operations into pullback/vJp

for larger computational graphs

At some point, we have to implement symbolic derivatives for atomic
operations

Automatic Differentiation
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Scalar Primitive Rules
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via scalar operations is straightforward

each operation, e.g., matrix-vector multiplication, can be written in scalar
operations (using loops, etc.)

 hence 

Vector Automatic Differentiation

y = f(x) = [x ​ sin(x ​); x ​x ​]0
3

1 2 1
2

x ∈ R , y ∈3 R2
​ ∈∂x

∂y R2×3
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F(f , (x, ), ( )) =ẋ ((y, ), ( ​ =ẏ ​ ))
∂x
∂y

ẋ

In [5]: f = lambda x: jnp.array([x[0]**3 * jnp.sin(x[1]), x[2]*x[1]**2])
In [6]: primal = jnp.array([1.0, 2.0, 3.0])
In [7]: tangent = jnp.array([1.0, 0.0, 0.0])

In [8]: jax.jvp(f, (primal,), (tangent,))
Out[8]: 
(DeviceArray([ 0.9092974, 12.       ], dtype=float32),
 DeviceArray([2.7278922, 0.       ], dtype=float32))

Vector Pushforward / Vector Jvp

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 15 / 60



B(f , (x, ), ( ​)) =ȳ ((y, ), ( =x̄ ​ ​ , ))(ȳT
∂x
∂y

)
T

In [9]: output, vjp_fun = jax.vjp(f, primal)

In [9]: cotangent = jnp.array([1.0, 0.0])

In [10]: vjp_fun(cotangent)
Out[10]: (DeviceArray([ 2.7278922 , -0.41614684,  0.        ], dtype=float32),)

Vector Pullback / Vector vjp
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Detour: Mult. Matrices with Unit Vectors
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Now assume 

 gives the -th column of the Jacobian 

 gives the -th row of the Jacobian 

Hence, build full Jacobian  by:

batching  pushforward evaluations

batching  pullback evaluations

Obtaining Jacobians

f : R →N RM

F(f , (x, ), (e ​))i i J ​f

B(f , (x, ), (e ​))i i J ​f

J ∈ RM×N

N

M
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Consequentially:
: forward-mode Jacobian more efficient

: reverse-mode Jacobian more efficient (DL: )

: forward-mode Jacobian more efficient due to smaller overhead

Obtaining Jacobians II

M > N

M < N M = 1 → O(1)

M ≈ N

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 19 / 60



Example: gemv  General Matrix-Vector multiplication

y = f(x,A, b) = Ax + b

We could differentiate through the double for-loop, but we could also:

JAX, TF, PyTorch, Zygote, etc. already do all that...

Express primitive rules again in terms of atomic operations

Autodiff for BLAS-level operations

F(f , (x,A, b), ( , , )) =ẋ Ȧ ḃ ((Ax + b, ), (A +ẋ x +Ȧ , ))ḃ

B(f , (x,A, b), ( ​, )) =ȳ ((Ax + b, ), (W ​, ​x , ​, ))T ȳ ȳ T ȳ
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https://fkoehler.site/autodiff-table/

BLAS-level Primitive Rules
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* from S. Walther PhD thesis
(https://edoc.hu-berlin.de/handle/18452/17166)

 Float-Level  BLAS-Level  PDE-Level

Hierachies
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Compute Graph with Diff. Physics
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NN

Compute Graph with Diff. Physics II
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How to differentiate through PDEs?
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Primal Physics

Adjoint Physics

Continuous Adjoint Advection Equation

u = P(θ) = {integrate from t = 0 to t = Δt ​ ​

⎩
⎨

⎧∂ u + ∂ ​ut x

u(t, 0)
u(0, x)

= 0
= u(t,L)
= θ(x)

=θ̄ ( ) =P̄ ū {integrate from t = Δt to t = 0 ​ ​

⎩
⎨

⎧∂ λ− ∂ ​λt x

λ(t, 0)
λ(Δt, x)

= 0
= λ(t,L)
= (x)ū
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Discretize-then-Optimize (DtO)

Optimize-then-Discretize (OtD)

But really ... it is a spectrum

The Buzzwords
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Level vJp-level Memory Tool

PDE functional result only Dolfin/FEniCs-adjoint

BLAS tensor every algebra operation PyTorch, TF, JAX, Zygote etc.

Scalar scalar every float Scalar AD engines

BLAS-level rules are the OtD for scalar-mode AD
PDE-level rules are the OtD for tensor-mode AD

Levels of hierarchy
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* Unfortunately, I lost the source of the presentation where I took this slide from

History

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 29 / 60



OtD DtO

Derivation
 Requires manual derivation of

adjoint code (including adjoint
BC!)

 automatic

Intrusiveness  Never open black box
 Requires code to be

written in a differentiable
way

Performance  Can be faster  Can be slower

Loosely speaking: Manual code optimization vs. gcc -O3

Comparison
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OtD DtO

Memory
 Might require to only

save input and output
 Tape all intermediary steps

Exactness
 Exact wrt continuous

objective

 Exact wrt discrete objective (better
for discrete optimization like machine
learning)

Debugging  hard  medium

My advice: Use BLAS-level DTO, but be aware of its shortcomings.Switch to
fully continuous OtD only for hardcore performance optimization.

Comparison II
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Specialities of Differentiable Physics
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from phi.flow import *
velocity = StaggeredGrid(0, x=64, y=64, bounds=Box(x=100, y=100))
smoke = CenteredGrid(0, ZERO_GRADIENT, x=200, y=200, bounds=Box(x=100, y=100))
INFLOW = 0.2 * resample(Sphere(x=50, y=9.5, radius=5), to=smoke, soft=True)
pressure = None

def step(v, s, p, dt=1.):
    s = advect.mac_cormack(s, v, dt) + INFLOW
    buoyancy = resample(s * (0, 0.1), to=v)
    v = advect.semi_lagrangian(v, v, dt) + buoyancy * dt
    ### ---> Linsolve start <---
    v, p = fluid.make_incompressible(v, (), Solve(x0=p))
    ### ---> Linsolve end <---
    return v, s, p

for _ in range(10):
    velocity, smoke, pressure = step(velocity, smoke, pressure)

https://github.com/tum-pbs/PhiFlow/blob/c4cec7ba9e62209c7bcfefeba7d87a42fa8a8193/demos/smoke_plume.py

Example: NS Pressure-Poisson Solve
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Requirement on continuity: 
Leads to a Poisson equation for the pressure: 

To then correct the velocity field: 

Discrete form: 

Pressure-Poisson Solve

∇ ⋅ v = 0
∇ p =2 ∇ ⋅ v∗

v =∗∗ v −∗ ∇p

Ap ​ =h b ​h
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​ ​

r ​ := b − Ax ​ p ​ := r ​ k := 00 0 0 0

repeat

α ​ := ​k p ​Ap ​k
T

k

r ​r ​k
T

k

x ​ := x ​ + α ​p ​ r ​ := r ​ − α ​Ap ​k+1 k k k k+1 k k k

if r ​ is sufficiently small, then exit loopk+1

β ​ := ​ p ​ := r ​ + β ​p ​k r ​r ​k
T

k

r ​r ​k+1
T

k+1
k+1 k+1 k k

return x ​ as the resultk+1

Conjugate Gradient Algorithm
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CG-Step CG-Step CG-Step

CG Compute Graph
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CG-Step CG-Step CG-Step

CG Compute Graph with Reverse Pass
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1. Unroll all iterations, build compute graph and transform (Unrolled Diff):
 Exact derivative of all operations
 Automatic, no modifications of code
 Need to tape all iterations
 Derivative Convergence might be different from primal convergence!

2. Find custom adjoint rule (what PhiFlow does) (Implicit Diff):
 Can be faster
 Less memory consumption in reverse mode
 Manual effort, because requires fiddling with the autodiff engine
 Might be hard to get right

Differentiating through CG Solve
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Primal

x = solve Ax = b for x{ }

Reverse Rule

​ ​

λ

b̄

Ā

= solve A λ = for λ{ T x̄ }

= λ

= −λxT

Adjoint rules is again a linsolve but with 

vJp rule for Linear System Solving

AT
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def _cg_solve(A, b):
  # Solve Ax = b

@jax.custom_vjp
def cg_solve(A, b):
  x = _cg_solve(A, b)
  return x

def cg_solve_fwd(A, b):
  x = _cg_solve(A, b)
  return x, (A, x)

def cg_solve_bwd(res, g):
  A, x = res
  lam = _cg_solve(A.T, g)
  return (-jnp.outer(lam, x), lam)

Registering linsolve custom adjoint rule
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−∇ ⋅ ((1 + u )∇u) =2 f(θ) in Ω, u = 1 on Γ ​, ∇u ⋅D n = 0 on Γ ​N

from dolfin import *

class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary

mesh = UnitSquareMesh(32, 32); V = FunctionSpace(mesh, "CG", 1)
g = Constant(1.0); bc = DirichletBC(V, g, DirichletBoundary())
u = Function(V); v = TestFunction(V); f = Expression("x[0]*sin(x[1])")
F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

solve(F == 0, u, bc, solver_parameters={"newton_solver":
                                        {"relative_tolerance": 1e-6}})

Example: Nonlinear FEM Solve in FEniCs
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​ ​

u ​ ← initial guess0

repeat

r ​ = F(u ​)k k

if r ​ is sufficiently small, then exit loopk

linsolve ​ ​ ​Δu ​ = −r ​

∂u
∂F

u ​k

k k

u ​ = u ​ + Δu ​k+1 k k

Newton-Raphson Algorithm
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1. Unroll all iterations, build compute graph and transform (assume you do
implicit diff to all linsolves):

 Exact derivative of all operations (given exact linsolves)
 Automatic, no modifications of code (given there is an implicit rule for

the linsolve)
 Need to tape all iterations
 Derivative Convergence might be different from primal convergence!
 Reverse pass has to solve as many linear systems as primal pass

Unroll-Diff through Newton-Raphson
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2. Find custom implicit rule:
 Certainly be faster because needs only one linsolve
 Less memory consumption in reverse-mode
 Intrusive because requires fiddling with the autodiff engine
 Might be hard to get right

Implicit-Diff through Newton-Raphson
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Primal

x = solve g(x, θ) = 0 for x{ }

Reverse Rule

​ ​

λ

θ̄

= solve ​ λ = for λ{ (
∂x
∂g

)
T

x̄ }

= − ​ λ(
∂θ
∂g

)
T

Nonlinear Solve Custom Adjoint Rule
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The Jvp/vJp propagation will always be linear!
Especially if primal is a nonlinear solve, implicit propagation solve (for forward
and reverse mode) will be linear solve and hence way cheaper
Custom implicit rules require informing the autodiff engine:

JAX already comes with custom rules for jax.numpy.linalg.solve  and
jax.scipy.sparse.linalg.XXX  with XXX   { cg , bicgstab , gmres }

If you have an algebra function calling into a third-party library, always
custom rule (cannot open black box):

Promising tool: Enzyme

General Insights and Tips

∈
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https://fkoehler.site/implicit-autodiff-table/

Implicit Primitive Rules
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Level vJp-level memory Tool

PDE functional result only Dolfin/FEniCs-adjoint

Algebra
tensor+custom
rules

each algebra operation and
implicit function

Need to be made
aware

BLAS tensor each algebra operation
PyTorch, TF, JAX,
Zygote etc.

Scalar scalar every float Scalar AD engines

Levels of hierarchy (revisited)
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Advanced Topics
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Neural ODEs (Chen et al. 2018):
Inference via integration
of an ODE (with
continuous adjoint)

Deep Equilibrium Networks
(Bai et al. 2019):

Inference via solution to a
root-finding problem (with
adjoint linear solve)

Cont. Repr. for NNs
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Blondel et al. 2022 "Efficient
and Modular Implicit
Differentiation"
Given an optimality condition,
automatically register
(co-)tanget propagation rules
within JAX

Internally performs
matrix-free linear solves
with linearizing the
optimality condition

Auto-Implicit Diff
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Even if your primal converges (exponentially) linear, the derivative
(=Jacobian) might not initially (Scieur et al. "The Curse of Unrolling: ...")

To ensure convergence of the Jacobian with gradient descent, we must either 1) accept that
the algorithm has a burn-in period proportional to the condition number 1/κ, or 2) choose
a small step size that will slow down the algorithm’s asymptotic convergence

Curse of Unrolling
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Strategic Gradient Cuts
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Strategic Gradient Cuts II
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"Stabilizing Backpropagation Through Time ..." by Schnell & Thuerey 2024

Strategic Gradient Cuts III
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Approximate Gradients (not fully execute iterative processes):
"Hyperparameter optimization with approximate gradient" (Pedregosa
2016)
"One-step differentiation of iterative algorithms" (Bolte et al. 2023)

Automated Continuous Adjoint Derivation:
Dolfin-Adjoint for FEniCs

Avoiding Differentiable Physics:
"How Temporal Unrolling Supports Neural Physics Simulators" (List et al.
2023)

Additional Topics
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https://arxiv.org/abs/1602.02355
https://arxiv.org/abs/1602.02355
https://arxiv.org/abs/2305.13768
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There are so many cool topics and open questions!

Feel free to contact me if you want to discuss any of these topics or have any
questions!

Interested?
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Conclusion
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Autodiff is a system to combine pushforward/jvp and pullback/vjp rules for
atomic operations

We need to define atomic operations with symbolic derivatives
Atomic operations can be on scalar-level, BLAS-level or continuous PDE-
level (with a spectrum in-between)
Taking gradients is syntactic sugar for pushforward and pullback

Always think input-output: Even continuous adjoints will eventually have
discrete inputs and outputs
Machine Learning often works well with slightly inaccurate gradients
(stochastic anyway); just get the gradients flowing 

Summary
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The definitive book on the mathematical perspective of Autodiff: "Evaluating
Derivatives: ..." by Griewank and Walther
A more digestible read for machine learning: "Automatic Differentiation in
Machine Learning: ..." by Baydin et al.
Refresher on Backpropagation from the modern "Understanding Deep
Learning" Book by Prince (Chapter 7 "Gradients and Initialization")
JAX tutorial on Autodiff and custom primtive rules
Matthew Johnson's talk on Autograd
Chapter 8 and Chapter 10 of Chris Rackauckas' SciML Book
ChainRules.jl ecosystem in Julia

Additional Resources
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https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://videolectures.net/deeplearning2017_johnson_automatic_differentiation/
https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/
https://book.sciml.ai/notes/10-Basic_Parameter_Estimation-Reverse-Mode_AD-and_Inverse_Problems/
https://book.sciml.ai/
https://juliadiff.org/ChainRulesCore.jl/stable/

