Autodiff & Adjoints

The machinery behind
differentiable physics and
deep learning

Felix Koehler

Motivation - Linear Regression TuTl

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 2 /60

Linear Regression - Matrix Gradient TI.ITI

s
B &

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 3/60

Parameter Space

e T2

bl wld Biz]

Wil — FsuT

wil A

or from
subsequent
computation

21— zh1 g 310

L Y 31 = (210 i/ 22 = widz

ol o =
3 = g(z)] e

1
L=lg-vli
B = Wik 51l _ (Tl 2

7= wiTZ

Data Space

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 4 /60

Motivation

e Neural Networks are big
nested compute graphs with
many free parameters

e We fit these parameters using
first-order optimizers

e Autodiff provides the gradients

e If physics P is part of the
gradient flow, it has to be
differentiated

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

5/60

Outline

1. Autodiff from a more General Perspective
I. A functional Viewpoint on Autodiff

ii. Vector-mode Autodiff (BLAS-level)
iii. Hierarchies in Autodiff
iv. Adjoints/Continuous Sensitivities (PDE-level)
v. History of Automatic Differentiation
2. Specialities of Differentiable Physics
3. Advanced topics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

6 /60

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 71760

Scalar Automatic Differentiation TI.ITI

20 =g
2 = n(2l0) = (2192
22 = m(2Y) = exp(z1)
28 = 1(21%) = sin(z1?)

y = 213!

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 8 /60

Two major ways of bracketing T|_|T|

Oy Oy 0213 82121 9zl 5210
ozx 928 9212 9211 52001 oy

oy Oy (028 (028 (9211 520
R (327[2] (8zm (az[OJ Oz)))

~ J/
-~

forward-mode

oy Oy 0z8\ 9221\ azl1\ 92
o T (((82[3] 87:[2]) 82[1]) 82[0]) Or

\

reverse-mode

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 9/60

Pushforward = Jvp

83/ . 8?/ 82[3] 82[2] 8,2[1] 82[0] .
8z" 928 (azm (azm (azm 9 "")))

In [1]: f = lambda x: jnp.sin(jnp.exp(x**2))

In [2]: jax.Jvp(f, (0.3,), (1.0,))
(DeviceArray(0.88854975, dtype=float32, weak_type=True),
DeviceArray(0.3011914, dtype=float32, weak_type=True))

* F(f5(=,),(%,)) = ((y,), (9))
* OPS(F(f,(z,),(,))) <2.5- OPS(f(x))

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

10 /60

Pullback = v]p TI.ITI
8y Ay \ 9281\ 8221\ 9zt 5200
“ 0w ((((yazm) azm) azm) 32[01) O

In [3]: output, vjp_fun = jax.vjp(f, 0.3)

In [4]: vjp_fun(1.0)
Out[4]: (DeviceArray(0.3011914, dtype=float32, weak_ type=True),)

B(f;(z,),(#,)) = (%), (%,))
» OPS(B(f, (%,),(9,))) < 4.0- OPS(f(z))

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 11 /60

Automatic Differentiation T|_|T|

is a system to combine:

e Pushforward/Jvp rules for atomic operations into pushforward/Jvp

e Pullback/vjp rules for atomic operations into pullback/vjp
for larger computational graphs

e At some point, we have to implement symbolic derivatives for atomic
operations

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 12 /60

Scalar Primitive Rules

Primitive

Explicit Scalar Rules

Scalar Addition

Scalar Multiplication

Scalar Negation

Scalar Inversion

Scalar Power

Primal
z2=T+ Y
z=x-Y
zZ=—x
z=1

X
2=z

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Pushforward/Jvp

f=d+y

z=y-rz+zx-y

Pullback/vJp

I 8I < 8 < 8

8I

N W

ST
8 <

TUTI

13760

Vector Automatic Differentiation TI.ITI

via scalar operations is straightforward

each operation, e.g., matrix-vector multiplication, can be written in scalar
operations (using loops, etc.)

ey = f(x) =] 88111(331);37233%]

e £ € R, y € R? hence % c R?*3

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 14 /60

Vector Pushforward / Vector Jvp TI.ITI

F(f, (@), (#) = (0,), (5 = 524)

In [5]: f = lambda x: jnp.array([x[0]**3 * jnp.sin(x[1]), X[2]*x[1]**2])
In [6]: primal = jnp.array([1.0, 2.0, 3.0])
In [7]: tangent = jnp.array([1.0, 0.0, 0.0])

In [8]: jax.jvp(f, (primal,), (tangent,))

out[8]:
(DeviceArray([0.9092974, 12.], dtype=float32),
DeviceArray([2.7278922, 0.], dtype=float32))

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 15/ 60

Vector Pullback / Vector vjp TI.ITI

B(£. (2, (@) = (), (@ = (52))

In [9]: output, vjp_fun = jax.vjp(f, primal)
In [9]: cotangent = jnp.array([1.0, 0.0])

In [10]: vjp_fun(cotangent)
Out[10]: (DeviceArray([2.7278922 , -0.41614684, O0.], dtype=float32),)

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 16/ 60

Detour: Mult. Matrices with Unit Vectors TuTI

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 17 /60

Obtaining Jacobians TI.ITI

e Now assume f : RY — RM

o F(f,(z,), (ei)) gives the i-th column of the Jacobian J
o B(f, (x,), (e;)) gives the i-th row of the Jacobian J¢

e Hence, build full Jacobian J € RM*N py:

o batching IV pushforward evaluations

o batching M pullback evaluations

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 18 /60

Obtaining Jacobians II TI.ITI

e Consequentially:
o M > N:forward-mode Jacobian more efficient

o M < N:reverse-mode Jacobian more efficient (DL: M =1 — O(1))

o M =~ N:forward-mode Jacobian more efficient due to smaller overhead

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 19/ 60

Autodiff for BLAS-level operations TUT]

Example: gemv General Matrix-Vector multiplication

y= f(z,A,b) = Az +b
e We could differentiate through the double for-loop, but we could also:
o F(f,(z,A,b), (&, A,b)) = (Az +b,), (A + Az + b,))

© B(f7 (CE, A7 b)7 (ga)) — ((Aw - b7)7 (WT Y, nga Y,))
o JAX, TF, PyTorch, Zygote, etc. already do all that...

e Express primitive rules again in terms of atomic operations

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 20/ 60

BLAS-level Primitive Rules

Explicit Tensor Rules

Matrix-Vector Product z — Ax

Matrix-Matrix Product C=AB
Scalar-Vector Product Z — OoX
Scalar-Matrix Product C =aA

https.//fkoehler.site/autodiff-table/

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

7z = Ax + Ax

C=AB+ AB

Z = QX + ax

C =a&A oA

x= ATz
AZZXT
A = CB”T
B=ATC
X — ZQ

a—1z'x
A = Ca
a=C:A

21760

https://fkoehler.site/autodiff-table/

Hierachies

* from S. Walther PhD thesis

(https://edoc.hu-berlin.de/handle/18452/17166)

Mathematical Function

¢

sequence of basic instructions sequence of high—level algorithms single symbolic expression
symbolic differentiation symbolic differentiation symbolic differentiation
at the elementary level at intermediate level of the complete expression

—
-

Hierarchical Level

[

low . . . higrh
- Flexibility/Automatic/Feasibility -
high . low
- Performance N
low high
. Float-Level BLAS-Level PDE-Level

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 22 /60

https://edoc.hu-berlin.de/handle/18452/17166

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 23 /60

Compute Graph with Diff. Physics II TI.ITI

;

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 24 /60

How to differentiate through PDEs?

u(0, x)

Btu —+ 6331& =0
u(t, 0)

= u(t, L)
= 0(x)

N
First-Order

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

25760

Continuous Adjoint Advection Equation T|_|T|

e Primal Physics

ou—+0u =0

e u =P(0) = {integrate fromt = 0 to t = At < u(t,0) = u(t, L)
u(0, x) = 0(x)

e Adjoint Physics
OA— 0 A =0

« 6 = P(u) = {integrate fromt = At tot =04 A(t,0) = X(t, L)

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 26 /60

The Buzzwords

Discretize-then-Optimize (DtO)

Optimize-then-Discretize (OtD)

e Butreally...itis a spectrum

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

27 /60

Levels of hierarchy TI.ITI

Level v]p-level Memory Tool

PDE functional resultonly Dolfin/FEniCs-adjoint

BLAS tensor every algebra operation PyTorch, TF, JAX, Zygote etc.
Scalar scalar every float Scalar AD engines

e BLAS-level rules are the OtD for scalar-mode AD

e PDE-level rules are the OtD for tensor-mode AD

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 28 /60

> 1960s >> 1970s

> 1980s >

Precursors Linnainmaa, 1970, 1976
Backpropagation

Kelley, 1960

Bryson, 1961 Dreyfus, 1973

Pontryagin et al., 1961 Control parameters

Dreyfus, 1962

Werbos, 1974

Wengert, 1964 Reverse mode
Forward mode

* Unfortunately, I lost the source of the presentation where I took this slide from

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985

LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989

Revived reverse mode 35

29 /60

Comparison
otD DtO
X Requires manual derivation of
Derivation adjoint code (including adjoint automatic
BC!)
X Requires code to be
Intrusiveness Never open black box written in a differentiable
way
Performance Can be faster X Can be slower

e Loosely speaking: Manual code optimization vs. gcc -03

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

30/60

Comparison II T|_|T|

otD DtO
Might require to onl

Memory .g 1 Y X Tape all intermediary steps

save input and output

, Exact wrt discrete objective (better

Exact wrt continuous . o .
Exactness o for discrete optimization like machine

objective ,

learning)

Debugging X hard medium

e My advice: Use BLAS-level DTO, but be aware of its shortcomings.Switch to
fully continuous OtD only for hardcore performance optimization.

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 31 /60

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 32/60

Example: NS Pressure-Poisson Solve

from phi.flow import *

velocity = StaggeredGrid(0, x=64, y=64, bounds=Box(x=100, y=100))

smoke = CenteredGrid(0, ZERO_GRADIENT, x=200, y=200, bounds=Box(x=100, y=100))
INFLOW = 0.2 * resample(Sphere(x=50, y=9.5, radius=5), to=smoke, soft=True)
pressure = None

def step(v, s, p, dt=1.):
S = advect.mac_cormack(s, v, dt) + INFLOW
buoyancy = resample(s * (0, 0.1), to=v)
v = advect.semi_lagrangian(v, v, dt) + buoyancy * dt

---> Linsolve start <---
v, p = fluid.make_incompressible(v, (), Solve(x0=p))
---> Linsolve end <---

return v, s, p

for _ in range(10):
velocity, smoke, pressure = step(velocity, smoke, pressure)

https://github.com/tum-pbs/PhiFlow/blob/c4cec7ba9e62209c7bcfefeba7d87a42fa8a8193/demos/smoke_plume.py

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 33/60

https://github.com/tum-pbs/PhiFlow/blob/c4cec7ba9e62209c7bcfefeba7d87a42fa8a8193/demos/smoke_plume.py

Pressure-Poisson Solve TI.ITI

e Requirement on continuity: V-v =20
e Leads to a Poisson equation for the pressure: V?p = V - v*

e To then correct the velocity field: v* = v* — Vp

e Discrete form: Apy, = by,

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 34 /60

Conjugate Gradient Algorithm T|_|T|

I'p Z:b—A.XO Po := Iy k:O

repeat
o — r;grrk
' P;crAPk
Xp+1 := Xi + Py Ty 1 =Ty — 0 Apy

if r;, ;1 is sufficiently small, then exit loop

T iTh+
Br = —+ Pr+1 := Tri1 + BePrk
r, Ik

return x;. 1 as the result

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 35760

CG Compute Graph TI.ITI

éa)
@
\ J

@@@ ------

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 36/ 60

CG Compute Graph with Reverse Pass TI_ITI

To CG-Step T CG-Step Io

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 37760

Differentiating through CG Solve TI.ITI

1. Unroll all iterations, build compute graph and transform (Unrolled Diff):
o Exact derivative of all operations

o 4 Automatic, no modifications of code
o X Need to tape all iterations
o X Derivative Convergence might be different from primal convergence!

2. Find custom adjoint rule (what PhiFlow does) (Implicit Diff):
o Can be faster

o Less memory consumption in reverse mode
o X Manual effort, because requires fiddling with the autodiff engine
o X Might be hard to get right

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 38 /60

v]p rule for Linear System Solving TI.ITI

Primal

x = {solve Ax = b for x}

Reverse Rule

A {solve AT\ = x for)\}
b=\
A= - \x?!

e Adjoint rules is again a linsolve but with A”

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 39/60

Registering linsolve custom adjoint rule TI.ITI

def _cg_solve(A, b):
Solve AX = Db

@jax.custom_vjp

def cg_solve(A, b):
X = _cg_solve(A, b)
return x

def cg_solve_fwd(A, b):
X = _cg_solve(A, b)
return x, (A, X)

def cg_solve_bwd(res, g):
A, X = res
lam = _cg_solve(A.T, Q)
return (-jnp.outer(lam, x), Llam)

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 40/ 60

Example: Nonlinear FEM Solve in FEniCs

TUTI

V- (1+4*)Vu) = f(0) inQ, wu=1 onlp, Vu-n=0 only

from dolfin import *
class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):
return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary

mesh = UnitSquareMesh(32, 32); V = FunctionSpace(mesh, "CG", 1)

g = Constant(1.0); bc = DirichletBC(V, g, DirichletBoundary())

u = Function(V); v = TestFunction(V); f = Expression("x[0]*sin(x[1])")
F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

solve(F == 0, u, bc, solver_parameters={"newton_solver":

{"relative_tolerance": 1e-6}})

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

41 /60

Newton-Raphson Algorithm TI.ITI

U, < initial guess

repeat
., — F(uk)
if r;, is sufficiently small, then exit loop
OF
linsolve —| Au, = —ry
ou|,

W1 = U, + Auy,

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 42 / 60

Unroll-Diff through Newton-Raphson TI.ITI

1. Unroll all iterations, build compute graph and transform (assume you do
implicit diff to all linsolves):
O Exact derivative of all operations (given exact linsolves)

o 4 Automatic, no modifications of code (given there is an implicit rule for
the linsolve)

o X Need to tape all iterations
o X Derivative Convergence might be different from primal convergence!

o X Reverse pass has to solve as many linear systems as primal pass

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 43 /60

Implicit-Diff through Newton-Raphson T|_|T|

2. Find custom implicit rule:
o Certainly be faster because needs only one linsolve

o Less memory consumption in reverse-mode
o X Intrusive because requires fiddling with the autodiff engine
o X Might be hard to get right

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 44 / 60

Nonlinear Solve Custom Adjoint Rule TI.ITI

Primal

x = {solve g(x,d) = 0 for x}

Reverse Rule

f

P T
A = < solve (_g) A = X for)\}
\ o0x

_ 8g T
(%)

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 45/ 60

General Insights and Tips TI.ITI

e The Jvp/v]p propagation will always be linear!
e Especially if primal is a nonlinear solve, implicit propagation solve (for forward
and reverse mode) will be linear solve and hence way cheaper

e Custom implicit rules require informing the autodiff engine:
o JAX already comes with custom rules for jax.numpy.linalg.solve and
jax.scipy.sparse.linalg.XXX with XXX & { cg, bicgstab, gmres }

o If you have an algebra function calling into a third-party library, always
custom rule (cannot open black box):
= Promising tool: Enzyme

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 46 / 60

https://enzyme.mit.edu/

Implicit Primitive Rules

Primitive

Discrete Problems

Scalar Root-Finding

Linear System Solving

Nonlinear System Solving

Primal

z = {solve g(z, 0) for =}

x = {solve Ax = b for x}

x = {solve g(x,6) = 0 for x}

Pushforward/Jvp
3
T =——5-0
B
d=b- Ax

x = {solve Ax = d for x}

og -
X = {solve %x =d for x}
ox

https.//fkoehler.site/implicit-autodiff-table/

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

TUTI

Pullback/vJp

6=—-z2L
B
A= {solve AT\ = x for A}
b=A\
A= T
T

A= {Solve (B_g) A =X for)\}

ox
_ og r
- (%)

47 /60

https://fkoehler.site/implicit-autodiff-table/

Levels of hierarchy (revisited) TI.ITI

Level v]p-level memory Tool
PDE functional result only Dolfin/FEniCs-adjoint
Alaebra tensor+custom each algebra operation and Need to be made

9 rules implicit function aware

, PyTorch, TF, JAX,
BLAS tensor each algebra operation
Zygote etc.

Scalar scalar every float Scalar AD engines

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 48 /60

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 49 /60

Cont. Repr. for NNs T|_|T|

« Neural ODEs (Chen et al. 2018) 5Remdual Network 5 ODE Network

o Inference via integration
of an ODE (with 4 ! 4
continuous adjoint) 3 3

e Deep Equilibrium Networks %2 ? E}z l : |
(Bai et al. 2019):

o Inference via solution to a 1 T 1 } /
root-finding problem (with [I
adjoint linear solve)) 2 > 50 >

put/Hidden/Output Input/Hidden/Output

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 50/60

https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1909.01377

Auto-Implicit Diff TUm

X_train, y_train = load_data() # Load features and labels

e Blondel et al. 2022 "Efficient

def f(x, theta): # Objective function

. e residual = jnp.dot(X_train, x) - y_train
and MOdUIar Imp“CIt return (jnp.sum(residual #** 2) + theta * jnp.sum(x ** 2)) / 2
L] L] L] "
[)Tfff?ff?f]tléﬂtl()r] # Since [1is differentiable and unconstrained, the optimality

condition F is simply the gradient of f in the 1st arqgument
F = jax.grad(f, argnums=0)

e Given an optimality condition,

. . @custom_root (F)
automatically reqgister def ridge_solver(init_x, theta):

. del init_x # Inttialization not used in this solwver
(co-)tanget propagation rules XX = jnp.dot(X_train.T, X_train)
Xy = jonp.dot(X_train.T, y_train)
Wlthln JAX I = jnp.eye(X_train.shape[1]) # Identity matriz

Finds the ridge reg solution by solving a linear system
return jnp.linalg.solve(XX + theta * I, Xy)

o Internally performs
matrix-free linear solves brint (jax. jacobian(ridge_solver, argmums—1) (init_x, 10.0))
with linearizing the
optimality condition

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 51760

https://arxiv.org/abs/2105.15183
https://arxiv.org/abs/2105.15183
https://arxiv.org/abs/2105.15183

Curse of Unrolling TI.ITI

e Even if your primal converges (exponentially) linear, the derivative
(=Jacobian) might not initially (Scieur et al. "The Curse of Unrolling: ...")

To ensure convergence of the Jacobian with gradient descent, we must either 1) accept that

the algorithm has a burn-in period proportional to the condition number 1/k, or 2) choose
a small step size that will slow down the algorithm’s asymptotic convergence

[—
-
—
—
-
T
]
b
+
~

[terate

suboptimality
—
<
|
=[S
step size

H
o
L

Jacobian
suboptimality

| | | | | | | I
0 50 100 150 200 0 50 100 150 200

iterations # iterations

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 52/60

|

https://arxiv.org/abs/2209.13271

Strategic Gradient Cuts

Controller

GOy

Simulator

Controller

'

Simulator

LLoss

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Rollout Loss

LLoss

53/60

Strategic Gradient Cuts II

Jeoz

‘[

Controllelk

|

Simulator

Loss

N

Controller

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Simulator

Rollout Loss

54 /60

a) Loss Landscape

c) Modified Field

4 - | |—————» — %
2.
o O
-2
-4
-4 -2 0 2 4
61 61

"Stabilizing Backpropagation Through Time ..." by Schnell & Thuerey 2024

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

=102

10!

10°

1071

102

55/60

https://arxiv.org/abs/2405.02041

Additional Topics TI.ITI

e Approximate Gradients (not fully execute iterative processes):
o "Hyperparameter optimization with approximate gradient" (Pedregosa
2016)

o "One-step differentiation of iterative algorithms" (Bolte et al. 2023)

e Automated Continuous Adjoint Derivation:
o Dolfin-Adjoint for FEniCs

e Avoiding Differentiable Physics:
o "How Temporal Unrolling Supports Neural Physics Simulators" (List et al.
2023)

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 56 /60

https://arxiv.org/abs/1602.02355
https://arxiv.org/abs/1602.02355
https://arxiv.org/abs/2305.13768
https://dolfin-adjoint.github.io/dolfin-adjoint/
https://arxiv.org/abs/2402.12971
https://arxiv.org/abs/2402.12971

Interested? T|_|T|

There are so many cool topics and open questions!

Feel free to contact me if you want to discuss any of these topics or have any
questions!

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 57760

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 58 /60

Summary Tl_ITI

e Autodiff is a system to combine pushforward/jvp and pullback/vjp rules for
atomic operations

o We need to define atomic operations with symbolic derivatives

o Atomic operations can be on
(with a spectrum in-between)

) or

o Taking gradients is syntactic sugar for pushforward and pullback

e Always : Even continuous adjoints will eventually have
discrete inputs and outputs

e Machine Learning often works well with slightly inaccurate gradients
(stochastic anyway); just get the gradients flowing *

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 59/60

Additional Resources TI.ITI

e The definitive book on the mathematical perspective of Autodiff: "Evaluating
Derivatives: ..." by Griewank and Walther

e A more digestible read for machine learning: "Automatic Differentiation in
Machine Learning: ..." by Baydin et al.

e Refresher on Backpropagation from the modern "Understanding Deep
Learning" Book by Prince (Chapter 7 "Gradients and Initialization")

e JAX tutorial on Autodiff and custom primtive rules
e Matthew Johnson's talk on Autograd
e Chapter 8 and Chapter 10 of Chris Rackauckas' SciML Book

e ChainRules.jl ecosystem in Julia

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints 60 / 60

https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://github.com/udlbook/udlbook/releases/download/v4.0.1/UnderstandingDeepLearning_05_27_24_C.pdf#2c
https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://videolectures.net/deeplearning2017_johnson_automatic_differentiation/
https://book.sciml.ai/notes/08-Forward-Mode_Automatic_Differentiation_(AD)_via_High_Dimensional_Algebras/
https://book.sciml.ai/notes/10-Basic_Parameter_Estimation-Reverse-Mode_AD-and_Inverse_Problems/
https://book.sciml.ai/
https://juliadiff.org/ChainRulesCore.jl/stable/

