ТΠ

Autodiff & Adjoints

The machinery behind differentiable physics and deep learning

Felix Koehler

Motivation - Linear Regression

Linear Regression - Matrix Gradient

Multi-Layer Perceptron

Motivation

- Neural Networks are big nested compute graphs with many free parameters
- We fit these parameters using first-order optimizers
- Autodiff provides the gradients
- If physics \mathcal{P} is part of the gradient flow, it has to be differentiated

Outline

1. Autodiff from a more General Perspective

- i. A functional Viewpoint on Autodiff
- ii. Vector-mode Autodiff (BLAS-level)
- iii. Hierarchies in Autodiff
- iv. Adjoints/Continuous Sensitivities (PDE-level)
- v. History of Automatic Differentiation
- 2. Specialities of Differentiable Physics
- 3. Advanced topics

A General Perspective on Autodiff

Scalar Automatic Differentiation

$$y=f(x)=\sin(\exp(x^2))=l(m(n(x)))$$

$$egin{aligned} &z^{[0]} = x \ &z^{[1]} = n(z^{[0]}) = (z^{[0]})^2 \ &z^{[2]} = m(z^{[1]}) = \exp(z^{[1]}) \ &z^{[3]} = l(z^{[2]}) = \sin(z^{[2]}) \ &y = z^{[3]} \end{aligned}$$

Two major ways of bracketing

$$rac{\partial y}{\partial x} = rac{\partial y}{\partial z^{[3]}} rac{\partial z^{[3]}}{\partial z^{[2]}} rac{\partial z^{[2]}}{\partial z^{[1]}} rac{\partial z^{[1]}}{\partial z^{[0]}} rac{\partial z^{[0]}}{\partial x}$$

Pushforward = Jvp

$$rac{\partial y}{\partial x}\dot{x} = rac{\partial y}{\partial z^{[3]}} \left(rac{\partial z^{[3]}}{\partial z^{[2]}} \left(rac{\partial z^{[2]}}{\partial z^{[1]}} \left(rac{\partial z^{[1]}}{\partial z^{[0]}} rac{\partial z^{[0]}}{\partial x} \dot{x}
ight)
ight)
ight)$$

In [1]: f = lambda x: jnp.sin(jnp.exp(x**2))

```
In [2]: jax.jvp(f, (0.3,), (1.0,))
(DeviceArray(0.88854975, dtype=float32, weak_type=True),
DeviceArray(0.3011914, dtype=float32, weak_type=True))
```

•
$$\mathcal{F}(f,(x,),(\dot{x},)) = ((y,),(\dot{y}))$$

•
$$OPS(\mathcal{F}(f,(x,),(\dot{x},))) \leq 2.5 \cdot OPS(f(x))$$

Pullback = vJp

$$ar{y}rac{\partial y}{\partial x} = \left(\left(\left(\left(ar{y}rac{\partial y}{\partial z^{[3]}}
ight) rac{\partial z^{[3]}}{\partial z^{[2]}}
ight) rac{\partial z^{[2]}}{\partial z^{[1]}}
ight) rac{\partial z^{[1]}}{\partial z^{[0]}}
ight) rac{\partial z^{[0]}}{\partial x}$$

In [3]: output, vjp_fun = jax.vjp(f, 0.3)

```
In [4]: vjp_fun(1.0)
Out[4]: (DeviceArray(0.3011914, dtype=float32, weak_type=True),)
```

•
$$\mathcal{B}(f,(x,),(ar{y},)) = ((y,),(ar{x},))$$

• $OPS(\mathcal{B}(f,(x,),(ar{y},))) \leq 4.0 \cdot OPS(f(x))$

ТШ

is a system to combine:

- Pushforward/Jvp rules for atomic operations into pushforward/Jvp
- Pullback/vJp rules for atomic operations into pullback/vJp

for larger computational graphs

• At some point, we have to implement symbolic derivatives for atomic operations

Primitive	Primal	Pushforward/Jvp	Pullback/vJp
Explicit Scalar Rules			
Scalar Addition	z = x + y	$\dot{z}=\dot{x}+\dot{y}$ 🔗	$ar{x}=ar{z}\ ar{y}=ar{z}^{\mathscr{O}}$
Scalar Multiplication	$z=x\cdot y$	$\dot{z} = y \cdot \dot{x} + x \cdot \dot{y}$ as	$ar{x} = ar{z} \cdot y \ ar{y} = ar{z} \cdot x^{arphi}$
Scalar Negation	z = -x	$\dot{z}=-\dot{x}$	$ar{x}=-ar{z}$
Scalar Inversion	$z = rac{1}{x}$	$\dot{z}=-rac{\dot{x}}{x^2}$	$ar{x}=-rac{ar{z}}{x^2}$
Scalar Power	$z=x^l$	$\dot{z} = lx^{l-1}\dot{x}$	$ar{x} = ar{z} l x^{l-1}$

via scalar operations is straightforward

each operation, e.g., matrix-vector multiplication, can be written in scalar operations (using loops, etc.)

•
$$y=f(x)=[x_0^3\sin(x_1);x_2x_1^2]$$

•
$$x \in \mathbb{R}^3, y \in \mathbb{R}^2$$
 hence $rac{\partial y}{\partial x} \in \mathbb{R}^{2 imes 3}$

Vector Pushforward / Vector Jvp

Vector Pullback / Vector vjp

$$\mathcal{B}(f,(x,),(ar{y}))=((y,),(ar{x}=\left(ar{y}^Trac{\partial y}{\partial x}
ight)^T,))$$

In [9]: output, vjp_fun = jax.vjp(f, primal)

```
In [9]: cotangent = jnp.array([1.0, 0.0])
```

In [10]: vjp_fun(cotangent)
Out[10]: (DeviceArray([2.7278922 , -0.41614684, 0.], dtype=float32),)

Detour: Mult. Matrices with Unit Vectors

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$egin{bmatrix} 1 \ 0 \end{bmatrix}^T egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix} = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}^T$$

Obtaining Jacobians

- Now assume $f: \mathbb{R}^N
 ightarrow \mathbb{R}^M$
 - $\circ \; \mathcal{F}(f,(x,),(e_i))$ gives the i-th column of the Jacobian J_f
 - $\circ \ \mathcal{B}(f,(x,),(e_i))$ gives the i-th row of the Jacobian J_f
- Hence, build full Jacobian $J \in \mathbb{R}^{M imes N}$ by:
 - \circ batching N pushforward evaluations
 - $\circ\,$ batching M pullback evaluations

Obtaining Jacobians II

- Consequentially:
 - $\circ \ M > N$: forward-mode Jacobian more efficient
 - $\circ \ M < N$: reverse-mode Jacobian more efficient (DL: $M = 1 o \mathcal{O}(1)$)
 - $\circ \ M pprox N$: forward-mode Jacobian more efficient due to smaller overhead

Example: gemv General Matrix-Vector multiplication

$$y = f(x, A, b) = Ax + b$$

• We could differentiate through the double for-loop, but we could also:

$$\circ \; \mathcal{F}(f,(x,A,b),(\dot{x},\dot{A},\dot{b})) = ((Ax+b,),(A\dot{x}+\dot{A}x+\dot{b},)) \; ,$$

$$\circ \ \mathcal{B}(f,(x,A,b),(ar{y},)) = ((Ax+b,),(W^Tar{y},ar{y}x^T,ar{y},))$$

• JAX, TF, PyTorch, Zygote, etc. already do all that...

• Express primitive rules again in terms of atomic operations

Explicit Tensor Rules			
Matrix-Vector Product	$\mathbf{z} = \mathbf{A}\mathbf{x}$	$\dot{\mathbf{z}} = \dot{\mathbf{A}}\mathbf{x} + \mathbf{A}\dot{\mathbf{x}} \mathscr{A}$	$ar{\mathbf{x}} = \mathbf{A}^T ar{\mathbf{z}} \ ar{\mathbf{A}} = ar{\mathbf{z}} \mathbf{x}^T \ oldsymbol{\mathscr{P}}$
Matrix-Matrix Product	$\mathbf{C} = \mathbf{A}\mathbf{B}$	$\dot{\mathbf{C}} = \dot{\mathbf{A}}\mathbf{B} + \mathbf{A}\dot{\mathbf{B}}$	$ar{\mathbf{A}} = ar{\mathbf{C}} \mathbf{B}^T \ ar{\mathbf{B}} = \mathbf{A}^T ar{\mathbf{C}}^{\mathscr{O}}$
Scalar-Vector Product	$\mathbf{z} = lpha \mathbf{x}$	$\dot{\mathbf{z}} = \dot{lpha}\mathbf{x} + lpha\dot{\mathbf{x}}$	$ar{\mathbf{x}} = ar{\mathbf{z}}lpha \ ar{lpha} = ar{\mathbf{z}}^T \mathbf{x}$
Scalar-Matrix Product	$\mathbf{C} = lpha \mathbf{A}$	$\dot{\mathbf{C}}=\dot{lpha}\mathbf{A}+lpha\dot{\mathbf{A}}$	$ar{\mathbf{A}} = ar{\mathbf{C}} lpha \ ar{lpha} = ar{\mathbf{C}} lpha$

https://fkoehler.site/autodiff-table/

Hierachies

• Float-Level BLAS-Level

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

PDE-Level

Compute Graph with Diff. Physics

Compute Graph with Diff. Physics II

How to differentiate through PDEs?

25 / 60

Continuous Adjoint Advection Equation

• Primal Physics

$$ullet u = \mathcal{P}(heta) = \{ ext{integrate from } t = 0 ext{ to } t = \Delta t egin{cases} \partial_t u + \partial_x u &= 0 \ u(t,0) &= u(t,L) \ u(0,x) &= heta(x) \end{cases}$$

• Adjoint Physics

$$egin{aligned} ullet ar{ heta} &= ar{\mathcal{P}}(ar{u}) = \{ ext{integrate from } t = \Delta t ext{ to } t = 0 egin{aligned} & \partial_t \lambda - \partial_x \lambda &= 0 \ & \lambda(t,0) &= \lambda(t,L) \ & \lambda(\Delta t,x) &= ar{u}(x) \end{aligned}$$

Discretize-then-Optimize (DtO)

Optimize-then-Discretize (OtD)

• But really ... it is a spectrum

Level	vJp-level	Memory	ΤοοΙ
PDE	functional	result only	Dolfin/FEniCs-adjoint
BLAS	tensor	every algebra operation	PyTorch, TF, JAX, Zygote etc.
Scalar	scalar	every float	Scalar AD engines

- BLAS-level rules are the OtD for scalar-mode AD
- PDE-level rules are the OtD for tensor-mode AD

History

1960s	1970s	1980s
Precursors	Linnainmaa, 1970, 1976 Backpropagation	Speelpenning, 1980 Automatic reverse mode
Kelley, 1960	1 1 5	
Bryson, 1961	Dreyfus, 1973	Werbos, 1982
Pontryagin et al., 1961 Dreyfus, 1962	Control parameters	First NN-specific backprop
	Werbos, 1974	Parker, 1985
Wengert, 1964	Reverse mode	
Forward mode		LeCun, 1985
		Rumelhart, Hinton, Williams, 1986 Revived backprop
		Griewank, 1989
ne source of the presentation wh		Revived reverse mode 29

* Unfortunately, I lost the source of the presentation where I took this slide from

	OtD	DtO
Derivation	X Requires manual derivation of adjoint code (including adjoint BC!)	V automatic
Intrusiveness	Never open black box	X Requires code to be written in a differentiable way
Performance	🗹 Can be faster	X Can be slower

• Loosely speaking: Manual code optimization vs. gcc -03

	OtD	DtO
Memory	Might require to only save input and output	X Tape all intermediary steps
Exactness	Exact wrt continuous objective	Exact wrt discrete objective (better for discrete optimization like machine learning)
Debugging	X hard	🗸 medium

• My advice: Use BLAS-level DTO, but be aware of its shortcomings.Switch to fully continuous OtD only for hardcore performance optimization.

Specialities of Differentiable Physics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

32 / 60

Example: NS Pressure-Poisson Solve

```
from phi.flow import *
velocity = StaggeredGrid(0, x=64, y=64, bounds=Box(x=100, y=100))
smoke = CenteredGrid(0, ZER0_GRADIENT, x=200, y=200, bounds=Box(x=100, y=100))
INFLOW = 0.2 * resample(Sphere(x=50, y=9.5, radius=5), to=smoke, soft=True)
pressure = None

def step(v, s, p, dt=1.):
    s = advect.mac_cormack(s, v, dt) + INFLOW
    buoyancy = resample(s * (0, 0.1), to=v)
    v = advect.semi_lagrangian(v, v, dt) + buoyancy * dt
    ### ---> Linsolve start <---
    v, p = fluid.make_incompressible(v, (), Solve(x0=p))
    ### ---> Linsolve end <---
    return v, s, p

for _ in range(10):
    velocity, smoke, pressure = step(velocity, smoke, pressure)
</pre>
```

https://github.com/tum-pbs/PhiFlow/blob/c4cec7ba9e62209c7bcfefeba7d87a42fa8a8193/demos/smoke_plume.py

Pressure-Poisson Solve

- Requirement on continuity: $abla \cdot \mathbf{v} = 0$
- Leads to a Poisson equation for the pressure: $abla^2 p =
 abla \cdot \mathbf{v}^*$
- To then correct the velocity field: $\mathbf{v}^{**} = \mathbf{v}^*
 abla p$
- Discrete form: $Ap_h = b_h$

Conjugate Gradient Algorithm

$$\mathbf{r}_0:=\mathbf{b}-\mathbf{A}\mathbf{x}_0 \qquad \mathbf{p}_0:=\mathbf{r}_0 \qquad k:=0$$

repeat

$$egin{aligned} & lpha_k := rac{\mathbf{r}_k^\mathsf{T}\mathbf{r}_k}{\mathbf{p}_k^\mathsf{T}\mathbf{A}\mathbf{p}_k} \ & \mathbf{x}_{k+1} := \mathbf{x}_k + lpha_k\mathbf{p}_k & \mathbf{r}_{k+1} := \mathbf{r}_k - lpha_k\mathbf{A}\mathbf{p}_k \ & ext{if } \mathbf{r}_{k+1} ext{ is sufficiently small, then exit loop} \ & eta_k := rac{\mathbf{r}_{k+1}^\mathsf{T}\mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T}\mathbf{r}_k} & \mathbf{p}_{k+1} := \mathbf{r}_{k+1} + eta_k\mathbf{p}_k \ & ext{return } \mathbf{x}_{k+1} ext{ as the result} \end{aligned}$$

CG Compute Graph

CG Compute Graph with Reverse Pass

37 / 60

Differentiating through CG Solve

1. Unroll all iterations, build compute graph and transform (**Unrolled Diff**):

- **V** Exact derivative of all operations
- Automatic, no modifications of code
- \circ X Need to tape all iterations
- X Derivative Convergence might be different from primal convergence!
- 2. Find custom adjoint rule (what PhiFlow does) (**Implicit Diff**):
 - Can be faster
 - **V** Less memory consumption in reverse mode
 - \circ X Manual effort, because requires fiddling with the autodiff engine
 - \circ X Might be hard to get right

vJp rule for Linear System Solving

Primal

$$\mathbf{x} = \{ \text{solve } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ for } \mathbf{x} \}$$

Reverse Rule

$$egin{aligned} \lambda &= \left\{ ext{solve } \mathbf{A}^T \lambda = ar{\mathbf{x}} ext{ for } \lambda
ight\} \ ar{\mathbf{b}} &= \lambda \ ar{\mathbf{A}} &= -\lambda \mathbf{x}^T \end{aligned}$$

• Adjoint rules is again a linsolve but with \mathbf{A}^T

Registering linsolve custom adjoint rule

```
def _cg_solve(A, b):
 \# Solve Ax = b
@jax.custom_vjp
def cg_solve(A, b):
  x = \_cg\_solve(A, b)
  return x
def cg_solve_fwd(A, b):
  x = \_cg\_solve(A, b)
  return x, (A, x)
def cg_solve_bwd(res, g):
 A, x = res
  lam = _cg_solve(A.T, g)
  return (-jnp.outer(lam, x), lam)
```

```
-
abla \cdot ((1+u^2)
abla u) = f(	heta) \quad 	ext{in}\,\Omega, \quad u=1 \quad 	ext{on}\,\Gamma_D, \quad 
abla u \cdot n = 0 \quad 	ext{on}\,\Gamma_N
```

```
from dolfin import *
```

```
class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary</pre>
```

```
mesh = UnitSquareMesh(32, 32); V = FunctionSpace(mesh, "CG", 1)
g = Constant(1.0); bc = DirichletBC(V, g, DirichletBoundary())
u = Function(V); v = TestFunction(V); f = Expression("x[0]*sin(x[1])")
F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx
solve(F == 0, u, bc, solver_parameters={"newton_solver":"
```

{"relative_tolerance": 1e-6}})

Newton-Raphson Algorithm

 $\mathbf{u}_0 \leftarrow ext{initial guess}$

repeat

 $egin{aligned} \mathbf{r}_k &= \mathbf{F}(\mathbf{u}_k) \ ext{if } \mathbf{r}_k ext{ is sufficiently small, then exit loop} \ ext{linsolve} & \left. rac{\partial \mathbf{F}}{\partial \mathbf{u}}
ight|_{\mathbf{u}_k} \Delta \mathbf{u}_k &= -\mathbf{r}_k \ \mathbf{u}_{k+1} &= \mathbf{u}_k + \Delta \mathbf{u}_k \end{aligned}$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Unroll-Diff through Newton-Raphson

- 1. Unroll all iterations, build compute graph and transform (assume you do implicit diff to all linsolves):
 - Section Sect
 - Automatic, no modifications of code (given there is an implicit rule for the linsolve)
 - \circ X Need to tape all iterations
 - X Derivative Convergence might be different from primal convergence!
 - \circ X Reverse pass has to solve as many linear systems as primal pass

Implicit-Diff through Newton-Raphson

2. Find custom implicit rule:

- Certainly be faster because needs only one linsolve
- **V** Less memory consumption in reverse-mode
- \circ X Intrusive because requires fiddling with the autodiff engine
- \circ X Might be hard to get right

Nonlinear Solve Custom Adjoint Rule

Primal

$$\mathbf{x} = \{ \text{solve } \mathbf{g}(\mathbf{x}, \theta) = \mathbf{0} \text{ for } \mathbf{x} \}$$

Reverse Rule

$$\begin{split} \lambda &= \left\{ \text{solve } \left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}} \right)^T \lambda = \bar{\mathbf{x}} \text{ for } \lambda \right\} \\ \bar{\theta} &= - \left(\frac{\partial \mathbf{g}}{\partial \theta} \right)^T \lambda \end{split}$$

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

General Insights and Tips

- The Jvp/vJp propagation will always be linear!
- Especially if primal is a nonlinear solve, implicit propagation solve (for forward and reverse mode) will be linear solve and hence way cheaper
- Custom implicit rules require informing the autodiff engine:
 - o JAX already comes with custom rules for jax.numpy.linalg.solve and jax.scipy.sparse.linalg.xxx with xxx $\in \{ cg, bicgstab, gmres \}$
 - If you have an algebra function calling into a third-party library, always custom rule (cannot open black box):
 - Promising tool: Enzyme

Implicit Primitive Rules

Primitive	Primal	Pushforward/Jvp	Pullback/vJp
Discrete Problems			
Scalar Root-Finding	$x = \{ ext{solve } g(x, heta) ext{ for } x \}$	$\dot{x}=-rac{rac{\partial g}{\partial heta}}{rac{\partial g}{\partial x}}\dot{ heta}$	$ar{ heta}=-ar{x}rac{rac{\partial g}{\partial heta}}{rac{\partial g}{\partial x}}$
Linear System Solving	$\mathbf{x} = \{ \text{solve } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ for } \mathbf{x} \}$	$egin{array}{lll} \mathbf{d} = \dot{\mathbf{b}} - \dot{\mathbf{A}} \mathbf{x} \ \dot{\mathbf{x}} = \{ ext{solve } \mathbf{A} \dot{\mathbf{x}} = \mathbf{d} ext{ for } \dot{\mathbf{x}} \} \end{array}$	$egin{aligned} \lambda &= \left\{ ext{solve } \mathbf{A}^T \lambda = ar{\mathbf{x}} ext{ for } \lambda ight\} \ ar{\mathbf{b}} &= \lambda \ ar{\mathbf{A}} &= -\lambda \mathbf{x}^T \end{aligned}$
Nonlinear System Solving	$\mathbf{x} = \{ \text{solve } \mathbf{g}(\mathbf{x}, \theta) = 0 \text{ for } \mathbf{x} \}$	$egin{aligned} \mathbf{d} &= -rac{\partial \mathbf{g}}{\partial heta} \dot{\mathbf{ heta}} \ \dot{\mathbf{x}} &= \left\{ \mathrm{solve} \; rac{\partial \mathbf{g}}{\partial \mathbf{x}} \dot{\mathbf{x}} = \mathbf{d} \; \mathrm{for} \; \dot{\mathbf{x}} ight\} \end{aligned}$	$egin{aligned} \lambda &= \left\{ ext{solve} \left(rac{\partial \mathbf{g}}{\partial \mathbf{x}} ight)^T \lambda = ar{\mathbf{x}} ext{ for } \lambda ight\} \ ar{ heta} &= -igg(rac{\partial \mathbf{g}}{\partial heta} igg)^T \lambda \end{aligned}$

https://fkoehler.site/implicit-autodiff-table/

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Levels of hierarchy (revisited)

Level	vJp-level	memory	ΤοοΙ
PDE	functional	result only	Dolfin/FEniCs-adjoint
Algebra	tensor+custom rules	each algebra operation and implicit function	Need to be made aware
BLAS	tensor	each algebra operation	PyTorch, TF, JAX, Zygote etc.
Scalar	scalar	every float	Scalar AD engines

Advanced Topics

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

49 / 60

Cont. Repr. for NNs

- Neural ODEs (Chen et al. 2018):
 - Inference via integration
 of an ODE (with
 continuous adjoint)
- Deep Equilibrium Networks (Bai et al. 2019):
 - Inference via solution to a root-finding problem (with adjoint linear solve)

Auto-Implicit Diff

- Blondel et al. 2022 "Efficient and Modular Implicit Differentiation"
- Given an optimality condition, automatically register (co-)tanget propagation rules within JAX
 - Internally performs

 matrix-free linear solves
 with linearizing the
 optimality condition

```
X_train, y_train = load_data() # Load features and labels
def f(x, theta): # Objective function
  residual = jnp.dot(X_train, x) - y_train
  return (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2
```

```
# Since f is differentiable and unconstrained, the optimality
# condition F is simply the gradient of f in the 1st argument
F = jax.grad(f, argnums=0)
```

```
@custom_root(F)
def ridge_solver(init_x, theta):
    del init_x # Initialization not used in this solver
    XX = jnp.dot(X_train.T, X_train)
    Xy = jnp.dot(X_train.T, y_train)
    I = jnp.eye(X_train.shape[1]) # Identity matrix
    # Finds the ridge reg solution by solving a linear system
    return jnp.linalg.solve(XX + theta * I, Xy)
```

```
init_x = None
print(jax.jacobian(ridge_solver, argnums=1)(init_x, 10.0))
```

Curse of Unrolling

• Even if your primal converges (exponentially) linear, the derivative (=Jacobian) might not initially (Scieur et al. "The Curse of Unrolling: ...")

To ensure convergence of the Jacobian with gradient descent, we must either 1) accept that the algorithm has a burn-in period proportional to the condition number $1/\kappa$, or 2) choose a small step size that will slow down the algorithm's asymptotic convergence

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Strategic Gradient Cuts

Strategic Gradient Cuts II

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

Strategic Gradient Cuts III

"Stabilizing Backpropagation Through Time ..." by Schnell & Thuerey 2024

Additional Topics

- Approximate Gradients (not fully execute iterative processes):
 - "Hyperparameter optimization with approximate gradient" (Pedregosa 2016)
 - "One-step differentiation of iterative algorithms" (Bolte et al. 2023)
- Automated Continuous Adjoint Derivation:
 - Dolfin-Adjoint for FEniCs
- Avoiding Differentiable Physics:
 - "How Temporal Unrolling Supports Neural Physics Simulators" (List et al. 2023)

There are so many cool topics and open questions!

Feel free to contact me if you want to discuss any of these topics or have any questions!

Conclusion

25 June 2024 | Felix Koehler | [ADL4P, Lecture 6] Autodiff & Adjoints

58 / 60

- Autodiff is a system to combine pushforward/jvp and pullback/vjp rules for atomic operations
 - $\circ~$ We need to define atomic operations with symbolic derivatives
 - Atomic operations can be on scalar-level, BLAS-level or continuous PDElevel (with a spectrum in-between)
 - Taking gradients is syntactic sugar for pushforward and pullback
- Always think input-output: Even continuous adjoints will eventually have discrete inputs and outputs
- Machine Learning often works well with slightly inaccurate gradients (stochastic anyway); just get the gradients flowing 😒

Additional Resources

- ТΠ
- The definitive book on the mathematical perspective of Autodiff: "Evaluating Derivatives: ..." by Griewank and Walther
- A more digestible read for machine learning: "Automatic Differentiation in Machine Learning: ..." by Baydin et al.
- Refresher on Backpropagation from the modern "Understanding Deep Learning" Book by Prince (Chapter 7 "Gradients and Initialization")
- JAX tutorial on Autodiff and custom primtive rules
- Matthew Johnson's talk on Autograd
- Chapter 8 and Chapter 10 of Chris Rackauckas' SciML Book
- ChainRules.jl ecosystem in Julia