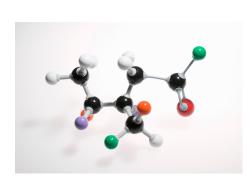
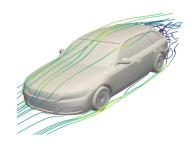
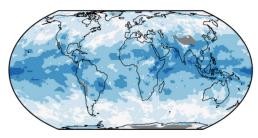
From Numerical Simulators of PDEs to Neural Emulators and Back

RISE ML Seminar | Felix Koehler | 6 Nov 2025

The Simulation of Natural Phenomena is Important!







Molecular/Quantum Simulations

Material & Drug Discovery

Visual Effects & Game Physics

Plausibility, Immersion, Entertainment

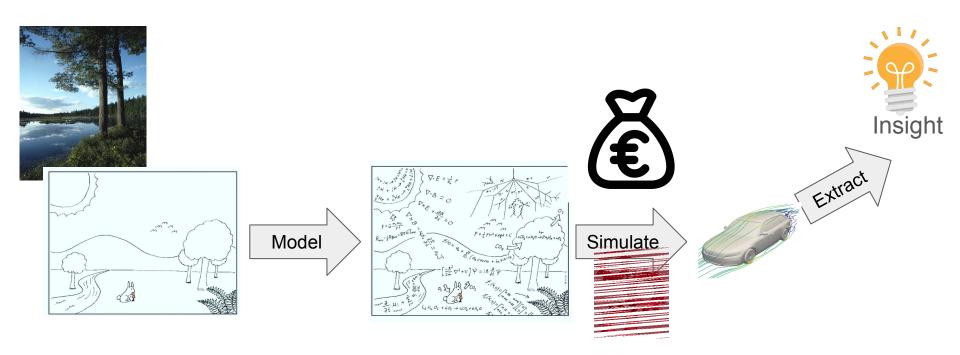
Engineering Simulations

Saver & more efficient designs

Weather & Climate

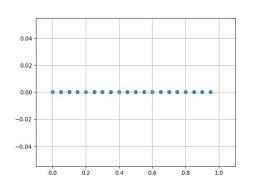
Weather Prediction, Understanding Climate Change

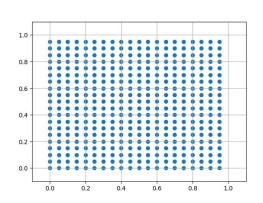
The Path of Simulation

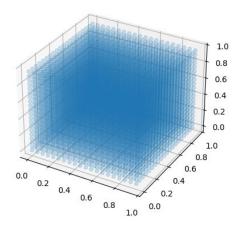


Can we approximate Simulations with Neural Networks?

Simplification: Abstract PDEs on Regular Periodic Grids



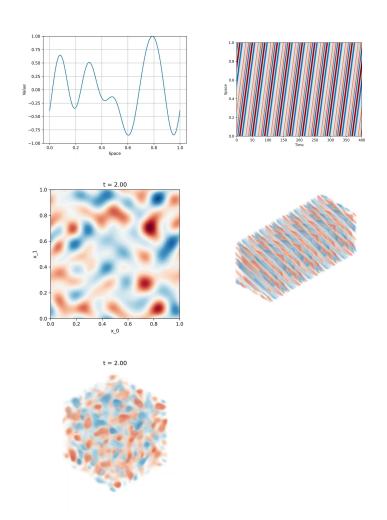


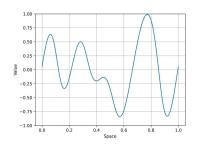


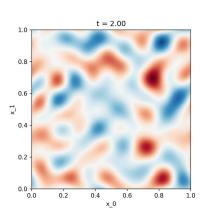
$$\frac{\partial u}{\partial t} = -b\frac{1}{2} \|\nabla u\|^2 - \nu \nabla \cdot \nabla u - \zeta \vec{1} \cdot \nabla^4 u$$

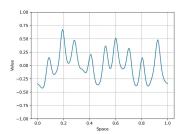
$$\frac{\partial u}{\partial t} = -c\vec{1} \cdot \nabla u$$

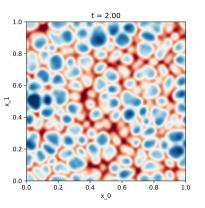
$$\frac{\partial u}{\partial t} = -b\frac{1}{2} \nabla \cdot (u \otimes u) + \nu \nabla \cdot \nabla u$$

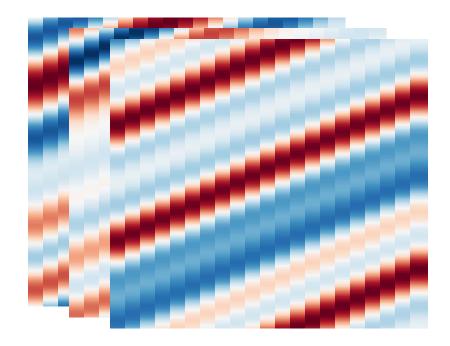


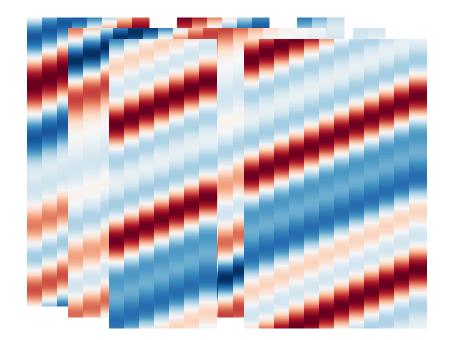


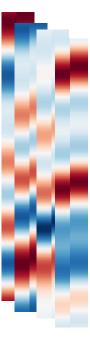


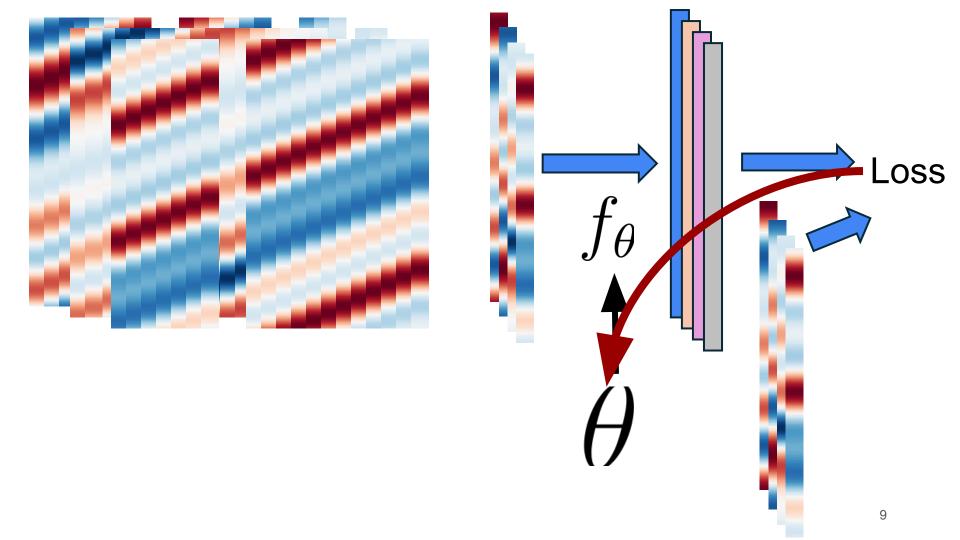




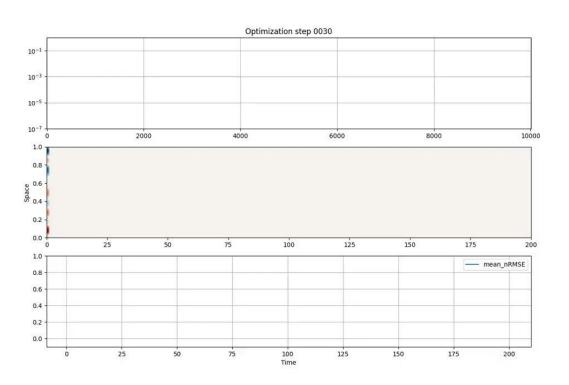




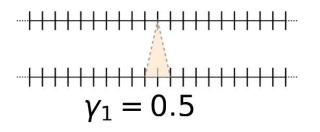


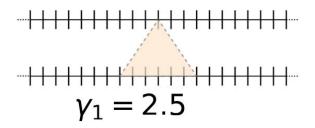


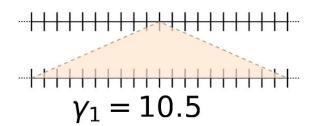
Advection Learning Animation

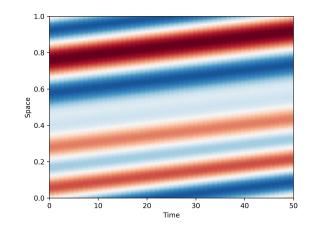


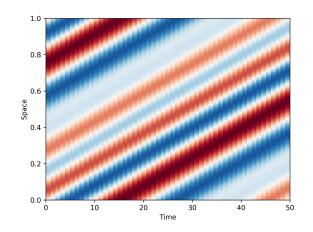
Different Parameterizations of PDEs

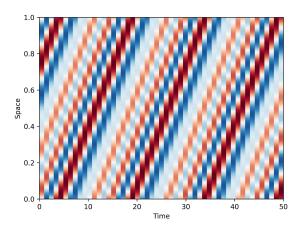




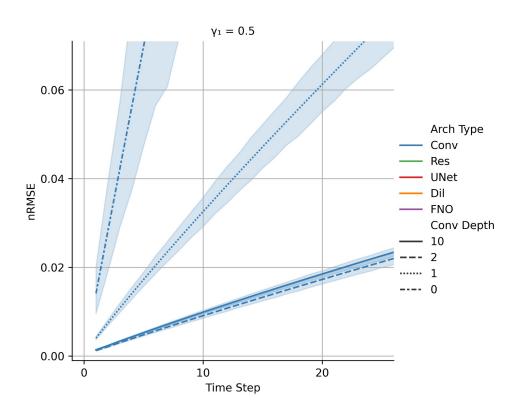




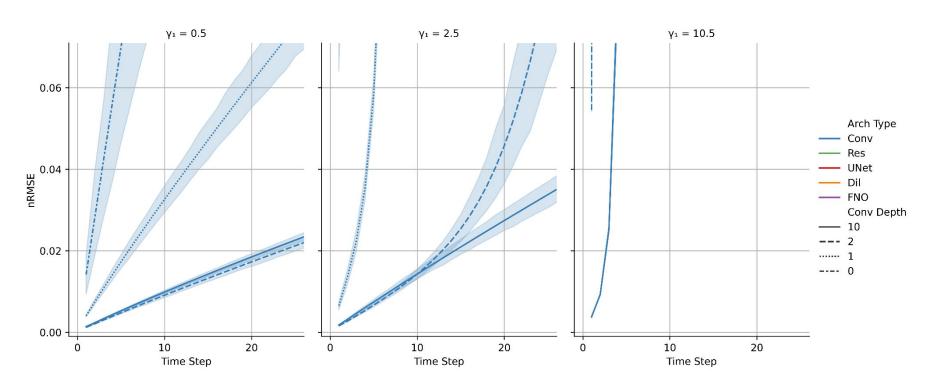




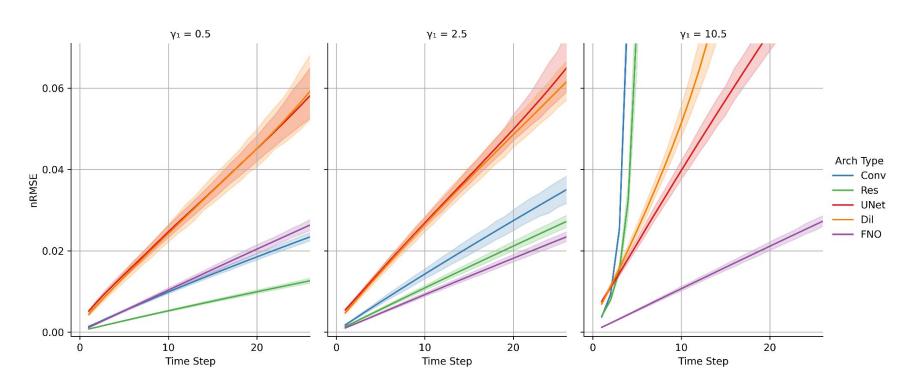
Low-Speed Advection Emulation



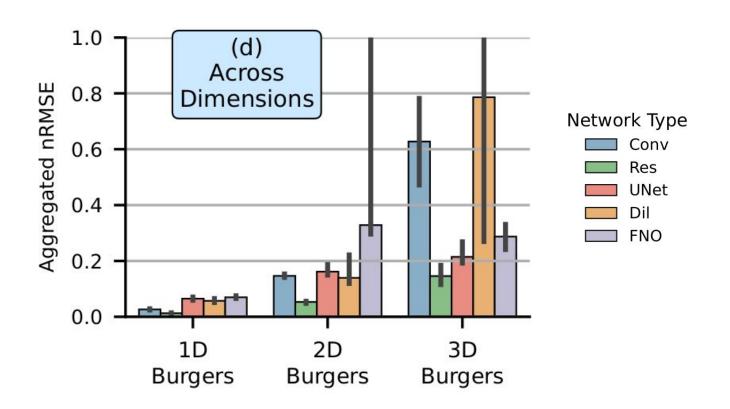
Advection Emulation at different speeds

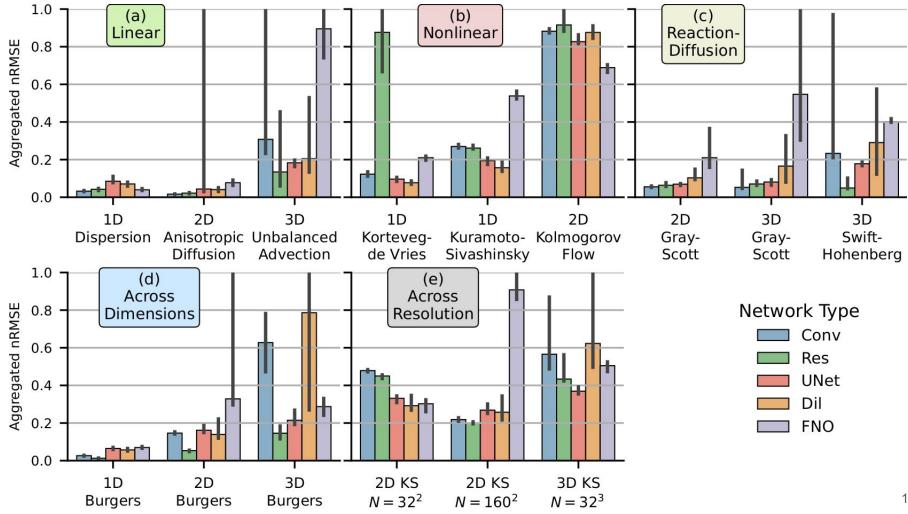


Advection Emulation at different speeds w/ other Archs

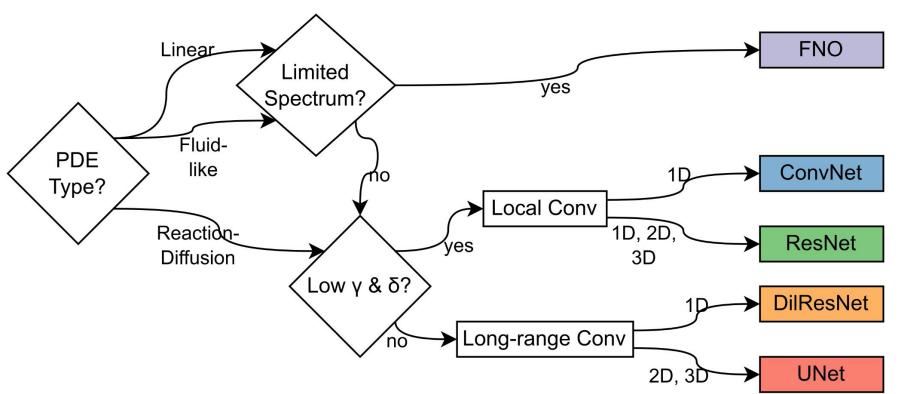


Burgers Emulation Across Dimensionality





Architecture Decision Tree



APEBench: A Benchmark for Autoregressive Neural Emulators of PDEs

Felix Koehler

Technical University of Munich Munich Center for Machine Learning

Rüdiger Westermann

Technical University of Munich westermann@tum.de

Simon Niedermayr

Technical University of Munich simon.niedermayr@tum.de

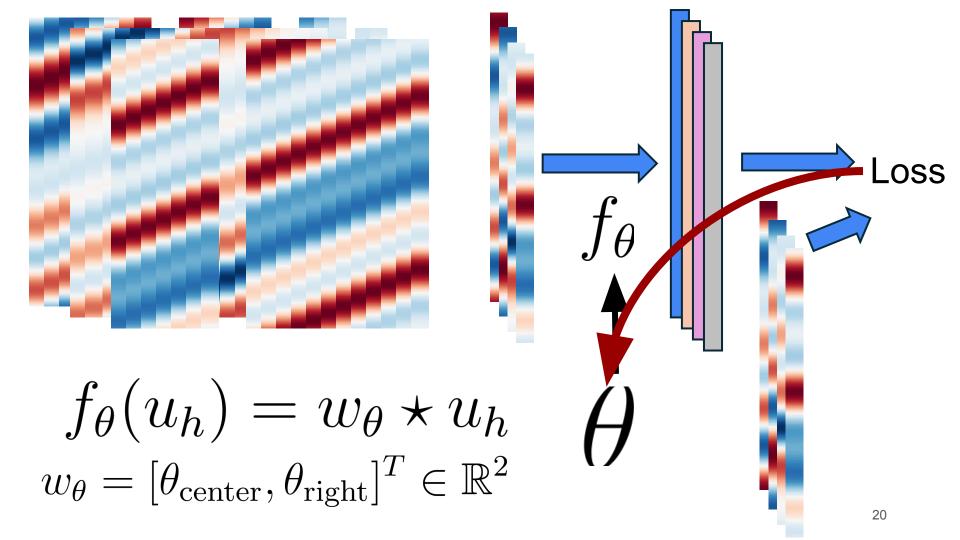
Nils Thuerey

Technical University of Munich nils.thuerey@tum.de

pip install apebench

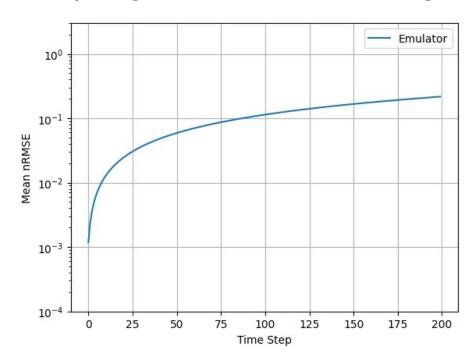
tum-pbs.github.io/apebench

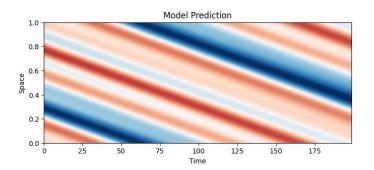
Let's dive deeper

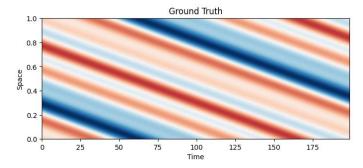


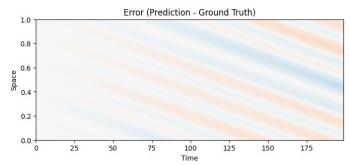
Working decently at

$$w_{\theta}^* = [0.2504286, 0.7508612]$$



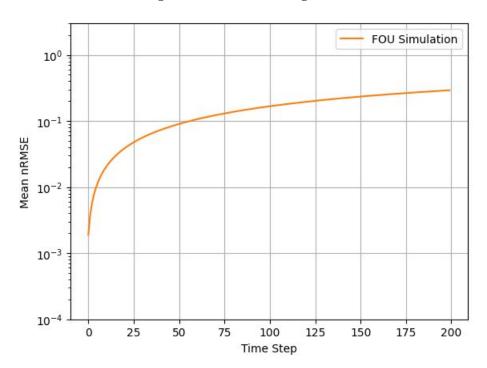


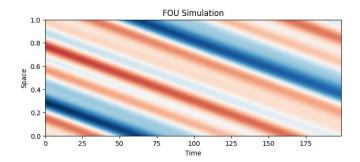


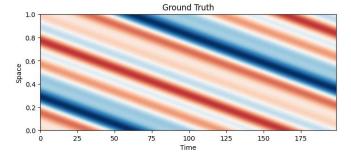


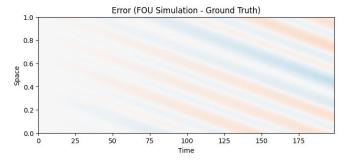
What about another numerical solver

$$w_{\text{FOU}} = [0.25, 0.75]$$

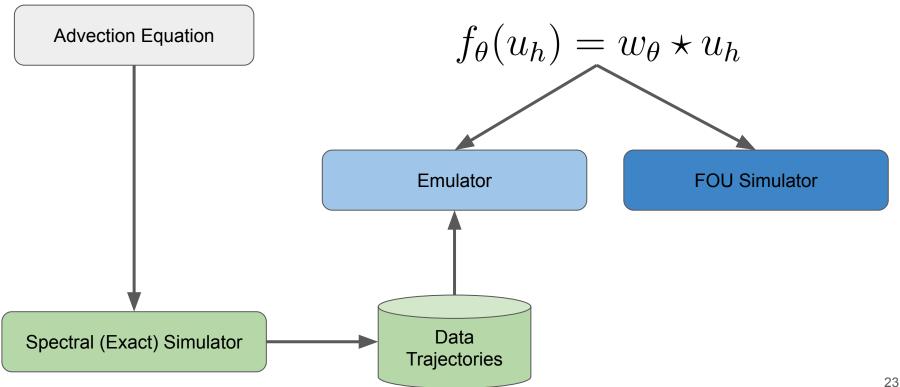




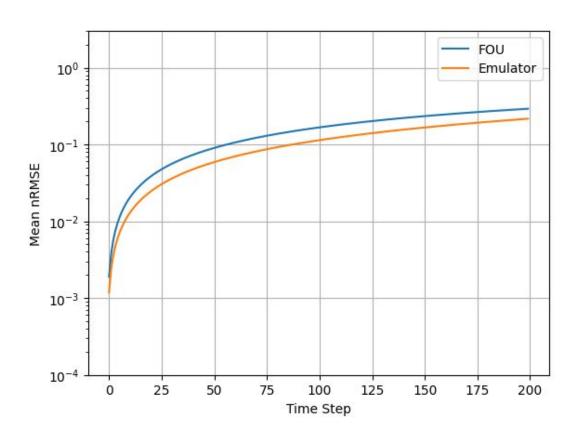




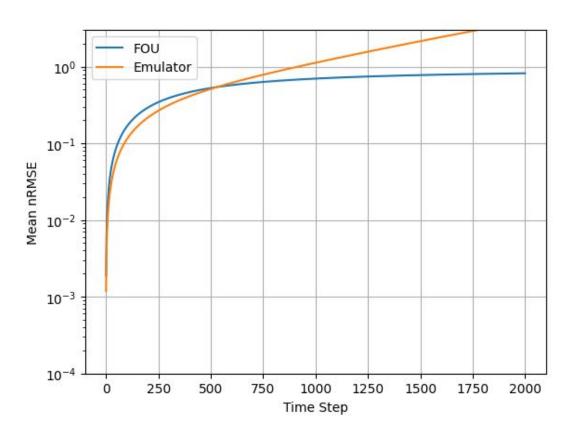
The three timesteppers in more context

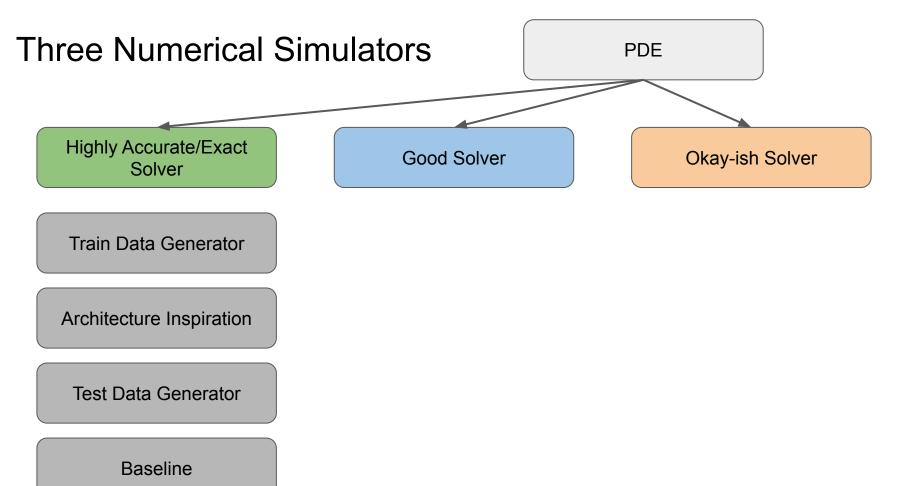


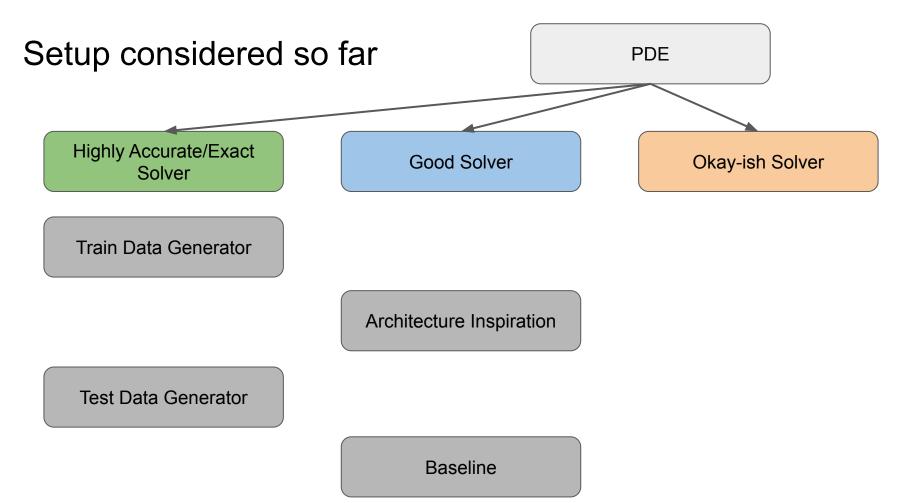
Emulator better under the same functional form?

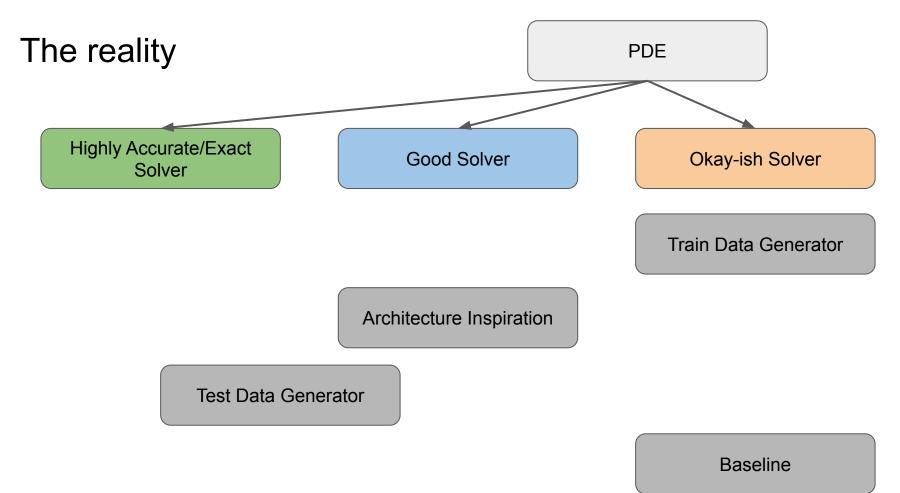


What's the catch? Emulator is not consistent!







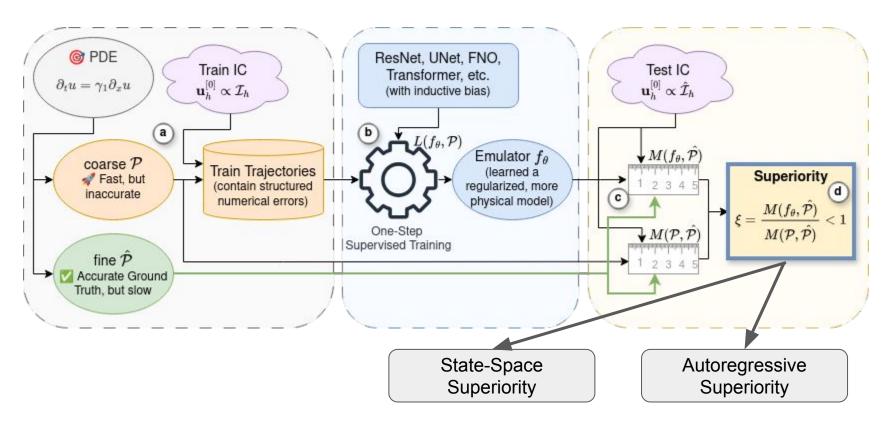


Understanding Difference Between Training and Testing

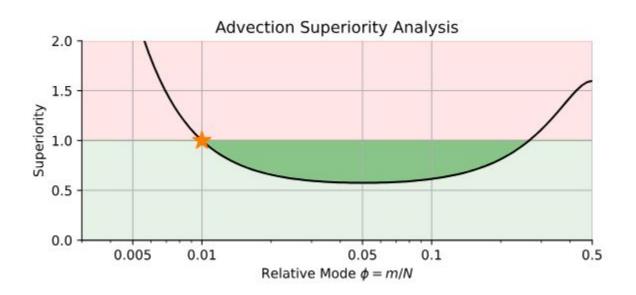
$$L(\theta) = \mathbb{E}_{\{\mathbf{u}_h^{[t]}, \mathbf{u}_h^{[t+1]}\} \sim \mathcal{T}_{\mathcal{P}_h}(\mathbf{u}_h^{[0]}), \mathbf{u}_h^{[0]} \sim \mathcal{I}_h} \left[\zeta \left(f_{\theta}(\mathbf{u}_h^{[t]}), \mathbf{u}_h^{[t+1]} \right) \right]$$

$$e^{[t]} = \mathbb{E}_{\mathbf{u}_h^{[0]} \sim \tilde{\mathcal{I}}_h} \left[\tilde{\zeta} \left(f_{\theta}^t(\mathbf{u}_h^{[0]}), \tilde{\mathcal{P}}_h^t(\mathbf{u}_h^{[0]}) \right) \right]$$

The missing piece: Where is the training data from?



Theoretically Provable -> Forward Superiority



Let's loop back to what we learned

- Spectral-Solver (Perfect) Data -> Functional Form of Explicit Method -> Better than the Explicit Method
- FOU (good) Data -> Functional Form of Explicit Method -> Recover Explicit
 Method
- IFOU (mediocre) Data -> Functional Form of Explicit Method -> Better than Implicit Method: Learned Emulator can be Superior!

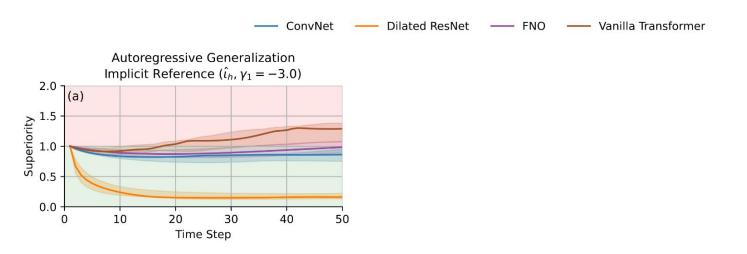
Let's go Nonlinear

Analytic Solution

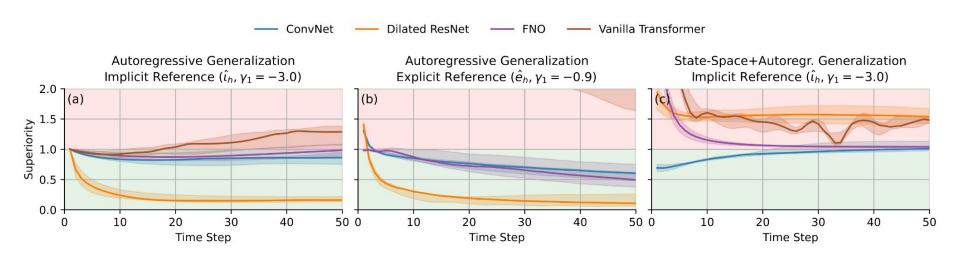
Neural Emulator (trained on coarse simulator →)

Coarse Simulator

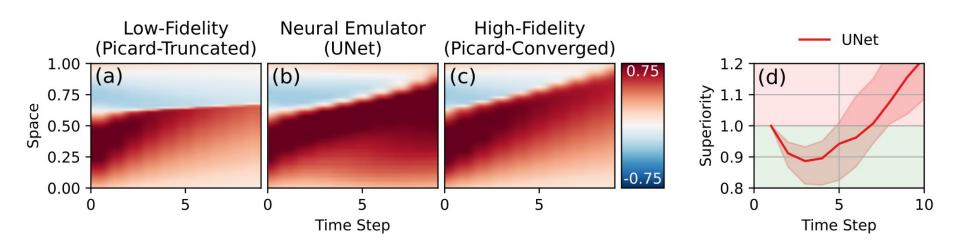
More Architectures On Advection



More Architectures On Advection



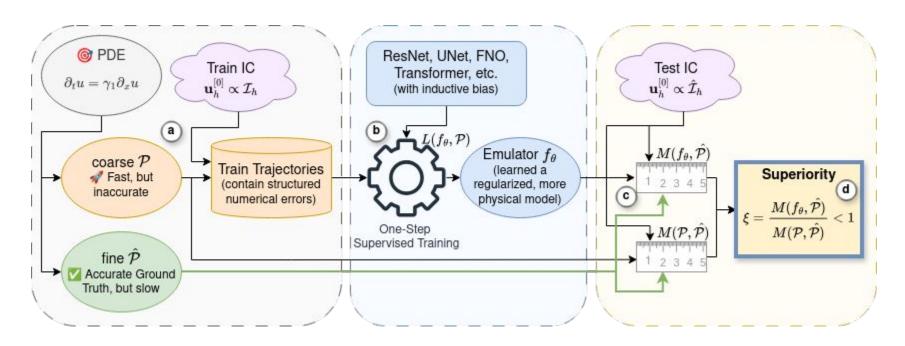
Interesting Example: Burgers



More Architectures on Burgers

Arch/Time Step	Superiority $\xi^{[t]}$ at Time Step									
	1	2	3	4	5	6	7	8	9	10
ConvNet	1.00	0.97	0.87	0.82	0.80	0.80	0.80	0.81	0.81	0.81
Dilated ResNet	1.00	0.91	0.79	0.73	0.69	0.66	0.65	0.67	0.66	0.65
FNO	1.00	1.01	0.91	0.87	0.86	0.89	0.93	1.00	1.08	1.12
Transformer	1.00	1.06	1.13	1.24	1.35	1.45	1.52	1.58	1.63	1.68
UNet	1.00	0.90	0.86	0.88	0.91	0.96	1.00	1.04	1.07	1.11

What does Emulator Superiority mean in practice?



What's Next in this field?

- Emulators for Larger 3D problems, especially on unstructured grids
- Foundation Models for a wider range of Dynamics
 - Here it seems that we need lower specific inductive bias to be applicable to all dynamics

For all this, it seems to crystallize that transformer models are best at scaling

PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations

Benjamin Holzschuh 1 Qiang Liu 1 Georg Kohl 1 Nils Thuerey 1

Summary and Take-Aways

- Neural Networks can be trained to approximate time-dependent PDE problems autoregressively
 - For a specified time horizon (), they can achieve decent accuracy
 - But, we do have little guarantees on them
 - For non-trivial simulations, they can speed up the solution process, especially in a more holistic setting
- Inductive biases are important for model performance
 - Chose the architecture that matches the best numerical scheme for the specific PDE
 - Sometimes, it is possible to have the inductive bias outlearn structured numerical errors from imperfect simulation data

Thanks for listening!

NeurIPS 2024

APEBench: A Benchmark for Autoregressive Neural Emulators of PDEs

Felix Koehler

Technical University of Munich Munich Center for Machine Learning f.koehler@tum.de

Rüdiger Westermann

Technical University of Munich

Simon Niedermayr

Technical University of Munich simon.niedermayr@tum.de

Nils Thuerey

Technical University of Munich nils.thuerey@tum.de

pip install apebench

NeurIPS 2025

Neural Emulator Superiority: When Machine Learning for PDEs Surpasses its Training Data

Felix Koehler & Nils Thuerey
Technical University of Munich
Munich Center for Machine Learning (MCML)
{f.koehler.nils.thuerey}@tum.de

tum-pbs.github.io/apebench