Composite Configuration¤
trainax.configuration.Composite
¤
Bases: BaseConfiguration
Source code in trainax/configuration/_composite.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
__init__
¤
__init__(
configurations: list[BaseConfiguration],
weights: list[float],
)
Compose configurations with respective weights.
Arguments:
configurations
: The list of configurations to compose.weights
: The list of weights to apply to the configurations.
Source code in trainax/configuration/_composite.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
__call__
¤
__call__(
stepper: Module,
data,
*,
ref_stepper: Module = None,
residuum_fn: Module = None
) -> float
Evaluate the composite configuration on the given data.
Based on the underlying configurations, ref_stepper
or residuum_fn
or both have to be supplied (as keyword-only arguments).
Arguments:
stepper
: The stepper to use for the configuration. Must have the signaturestepper(u_prev: PyTree) -> u_next: PyTree
.data
: The data to evaluate the configuration on. This depends on the concrete configuration. In the most reduced case, it just contains the set of initial states.ref_stepper
: The reference stepper to use for some configurations.residuum_fn
: The residuum function to use for some configurations.
Returns:
- The loss value computed by all configurations combined and weighted.
Source code in trainax/configuration/_composite.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|