Supervised Trainer¤
trainax.trainer.SupervisedTrainer
¤
Bases: GeneralTrainer
Source code in trainax/trainer/_supervised.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
__init__
¤
__init__(
data_trajectories: PyTree[
Float[Array, "num_samples trj_len ..."]
],
*,
ref_stepper: eqx.Module = None,
residuum_fn: eqx.Module = None,
optimizer: optax.GradientTransformation,
callback_fn: Optional[BaseCallback] = None,
num_training_steps: int,
batch_size: int,
num_rollout_steps: int = 1,
time_level_loss: BaseLoss = MSELoss(),
cut_bptt: bool = False,
cut_bptt_every: int = 1,
time_level_weights: Optional[
Float[Array, num_rollout_steps]
] = None,
do_sub_stacking: bool = True
)
Supervised (rollout) trainig for an autoregressive neural emulator on a collection of trajectories.
Classical one-step supervised learning is achieved with
num_rollout_steps=1
.
Ensure that the data_trajectories
trajectory length is at least as
long as num_rollout_steps + 1
(the additional step is for the initial
condition).
Arguments:
data_trajectories
: The batch of trajectories to slice. This must be a PyTree of Arrays who have at least two leading axes: a batch-axis and a time axis. For example, the zeroth axis can be associated with multiple initial conditions or constitutive parameters and the first axis represents all temporal snapshots. A PyTree can also just be an array. You can provide additional leafs in the PyTree, e.g., for the corresponding constitutive parameters etc. Make sure that the emulator has the corresponding signature.ref_stepper
: For compatibility with other configurations; not used.residuum_fn
: For compatibility with other configurations; not used.optimizer
: The optimizer to use for training. For example, this can beoptax.adam(LEARNING_RATE)
. Also use this to supply an optimizer with learning rate decay, for exampleoptax.adam(optax.exponential_decay(...))
. If your learning rate decay is designed for a certain number of update steps, make sure that it aligns withnum_training_steps
.callback_fn
: A callback to use during training. Defaults to None.num_training_steps
: The number of training steps to perform.- `batch_size: The batch size to use for training. Batches are randomly sampled across both multiple trajectories, but also over different windows within one trajectory.
num_rollout_steps
: The number of time steps to autoregressively roll out the model. Defaults to 1 (which is one-step supervised training).time_level_loss
: The loss function to use at each time step. Defaults to MSELoss().cut_bptt
: Whether to cut the backpropagation through time (BPTT), i.e., insert ajax.lax.stop_gradient
into the autoregressive network main chain.cut_bptt_every
: The frequency at which to cut the BPTT. Only relevant ifcut_bptt
is True. Defaults to 1 (meaning after each step).time_level_weights
: An array of lengthnum_rollout_steps
that contains the weights for each time step. Defaults to None, which means that all time steps have the same weight (=1.0). (keyword-only argument)do_sub_stacking
: Whether to use sub-stacking. IfFalse
, then the given reference trajectory will not be sliced into windows of lengthnum_rollout_steps + 1
.
Info
- Under reverse-mode automatic differentiation memory usage grows
linearly with
num_rollout_steps
.
Source code in trainax/trainer/_supervised.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
__call__
¤
__call__(
stepper: eqx.Module,
key: PRNGKeyArray,
opt_state: Optional[optax.OptState] = None,
*,
return_loss_history: bool = True,
record_loss_every: int = 1,
spawn_tqdm: bool = True
) -> Union[
tuple[eqx.Module, Float[Array, num_minibatches]],
eqx.Module,
tuple[eqx.Module, Float[Array, num_minibatches], list],
tuple[eqx.Module, list],
]
Perform the entire training of an autoregressive neural emulator given
in an initial state as stepper
.
This method's return signature depends on the presence of a callback
function. If a callback function is provided, this function has at max
three return values. The first return value is the trained stepper, the
second return value is the loss history, and the third return value is
the auxiliary history. The auxiliary history is a list of the return
values of the callback function at each minibatch. If no callback
function is provided, this function has at max two return values. The
first return value is the trained stepper, and the second return value
is the loss history. If return_loss_history
is set to False
, the
loss history will not be returned.
Arguments:
stepper
: The equinox Module to be trained.key
: The random key to be used for shuffling the minibatches.opt_state
: The initial optimizer state. Defaults to None, meaning the optimizer will be reinitialized.return_loss_history
: Whether to return the loss history.record_loss_every
: Record the loss everyrecord_loss_every
minibatches. Defaults to 1, i.e., record every minibatch.spawn_tqdm
: Whether to spawn the tqdm progress meter showing the current update step and displaying the epoch with its respetive minibatch counter.
Returns:
- Varying, see above. It will always return the trained stepper as the first return value.
Tip
You can use equinox.filter_vmap
to train mulitple networks (of the
same architecture) at the same time. For example, if your GPU is not
fully utilized yet, this will give you a init-seed statistic
basically for free.
Source code in trainax/_general_trainer.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|